Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Sun’s X-file under the Spotlight

03.09.2004


One of the Sun’s greatest mysteries is about to be unravelled by UK solar astrophysicists hosting a major international workshop at the University of St Andrews from September 6-9th 2004. For years scientists have been baffled by the ’coronal heating problem’: why it is that the light surface of the Sun (and all other solar-like stars) has a temperature of about 6000 degrees Celsius, yet the corona (the crown of light we see around the moon at a total eclipse) is at a temperature of two million degrees?



Understanding our nearest star is important because its behaviour has such an immense impact on our planet. This star provides all the light, heat and energy required for life on Earth and yet there is still much about the Sun that is shrouded in mystery.

"The problem is like an Astrophysics X-file! It is totally counter intuitive that the Sun’s temperature should rise as you move away from the hot surface," explains Dr Robert Walsh of the University of Central Lancashire and co-organiser of the workshop. "It is like walking away from a fire and suddenly hitting a hotspot, thousands of times hotter than the fire itself."


Using the joint ESA/NASA satellite, the Solar and Heliospheric Observatory (SOHO), along with another NASA mission called TRACE, researchers have gathered enough data to form two rival theories to explain what has been termed ’coronal heating’. It is now believed that the Sun’s strong magnetic field is the culprit behind this unique phenomenon. At this SOHO workshop, scientists from the UK and around the world will look at the evidence for these two explanations and try to untangle the clues we now have available to us.

Walsh continues, "SOHO’s contribution to the research has been so important because for the first time we can take simultaneous magnetic and extreme ultraviolet images of the Sun’s atmosphere, allowing us to study the changes in the magnetic field at the same time as the corresponding effect in the corona. Then, using sophisticated computer simulations, we have constructed 3d models of the coronal magnetic field that can be compared with SOHO’s observations."

One possible mechanism for coronal heating is called ’wave heating’. Prof Alan Hood from the Solar and Magnetospheric Theory Group at St. Andrews explains: "The Sun has a very strong magnetic field which can carry waves upwards from the bubbling solar surface. Then these waves dump their energy in the corona, like ordinary ocean waves crashing on a beach. The energy of the wave has to go somewhere and in the corona it heats the electrified gases to incredible temperatures."

The other rival mechanism is dependent on twisting the Sun’s magnetic field beyond breaking point. Prof Richard Harrison of the UK’s Rutherford Appleton Laboratory says "The Sun’s magnetic field has loops, known to be involved in the processes of sun spots and solar flares. These loops reach out into the Sun’s corona and can become twisted. Like a rubber band, they can become so twisted that eventually they snap. When that happens, they release their energy explosively, heating the coronal gases very rapidly".

The Sun is the only star astronomers can study in close detail and many questions remain. The workshop will also look forwards to future missions such as Solar-B, STEREO and Solar Orbiter that all have important UK involvement through PPARC.

Julia Maddock | EurekAlert!
Further information:
http://www.pparc.ac.uk
http://www.pparc.ac.uk/Nw/Md/Artcl/soho15_images.asp
http://sohowww.nascom.nasa.gov

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>