Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New colossal carbon tubes created, and flipping spins at the speed limit

31.07.2008
Colossal Carbon Tubes leave Kevlar and Nanotubes in the Dust H. Peng, D. Chen, J.-Y. Huang, S. B. Chikkannanavar, J. Hänisch, M. Jain, D. E. Peterson, S. K. Doorn, Y. Lu, Y. T. Zhu, and Q. X. Jia Physical Review Letters (forthcoming)

A collaboration of Chinese and American physicists has discovered a way to make a new carbon structure that could lead to fabrics 30 times stronger than Kevlar and 224 times stronger than cotton. The group dubbed the structures colossal carbon tubes because they're thousands of times larger than carbon nanotubes. At 40-100 millionths of a meter across and centimeters long, they're comparable in size to typical cotton fibers.

The structures consist of nested inner and outer tubes separated by hollow channels, making the tubes both light and strong. While they are nowhere near as strong as carbon nanotubes, the colossal tubes are much more ductile than the nanoscopic variety, making them more suited for spinning into threads and weaving into fabrics. The colossal tubes conduct electricity and show some of the properties of semiconductors, which means that they could lead to novel microelectronic components as well as super strong cloth.

The details regarding how the intricate structures form is still hazy, but the researchers propose that colossal carbon tubes could be incorporated into improved body armor, stronger carbon fiber composites (which are often shaped into parts for high-performance and lightweight vehicles), or components in microelectronics and tiny machines.

Spin Flips Hit the Speed Limit
S. Serrano-Guisan, K. Rott, G. Reiss, J. Langer, B. Ocker, and H.W. Schumacher Physical Review Letters (forthcoming)

A team of physicists at Physikalisch-Technische Bundesanstalt in Germany has managed to flip a nanoscopic magnet as fast as the fundamental speed limit allows. Their experiment consisted of two stacked layers of tiny magnets separated by a thin barrier to form what is called a magnetic tunnel junction. Such magnetic tunneling junctions are promising candidates for future magnetic memory chips.

The researchers allowed electrons aligned in a special way to flow between the layers, developing a spin torque, or twisting force that is transferred from one layer of nanomagnet onto the other. This torque pumps enough energy to the nanomagnet to make it move faster and faster until it changes direction. Several measurements showed that the researchers were able to switch the direction of magnetization as fast as physically possible.

Their spin torque record is important for the next generation of low current, ultra fast magnetic memory chips and sensors. This new generation of electronics encodes information in an electronic spin, rather than in an electronic charge. The spin torque switching effect is a powerful new approach to controlling electronic spins.

James Riordon | American Physical Society
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>