Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pulsar in stellar triple system makes unique gravitational laboratory

06.01.2014
Neutron star, 2 white dwarfs give best opportunity yet to study complex gravitational interactions and may give clue to true nature of gravity

Astronomers using the National Science Foundation's Green Bank Telescope (GBT) have discovered a unique stellar system of two white dwarf stars and a superdense neutron star, all packed within a space smaller than Earth's orbit around the Sun.

The closeness of the stars, combined with their nature, has allowed the scientists to make the best measurements yet of the complex gravitational interactions in such a system.

In addition, detailed studies of this system may provide a key clue for resolving one of the principal outstanding problems of fundamental physics -- the true nature of gravity.

"This triple system gives us a natural cosmic laboratory far better than anything found before for learning exactly how such three-body systems work and potentially for detecting problems with General Relativity that physicists expect to see under extreme conditions," said Scott Ransom of the National Radio Astronomy Observatory (NRAO).

West Virginia University graduate student Jason Boyles (now at Western Kentucky University) originally uncovered the pulsar as part of a large-scale search for pulsars with the GBT. Pulsars are neutron stars that emit lighthouse-like beams of radio waves that rapidly sweep through space as the object spins on its axis. One of the search's discoveries was a pulsar some 4200 light-years from Earth, spinning nearly 366 times per second.

Such rapidly-spinning pulsars are called millisecond pulsars, and can be used by astronomers as precision tools for studying a variety of phenomena, including searches for the elusive gravitational waves. Subsequent observations showed that the pulsar is in a close orbit with a white dwarf star, and that pair is in orbit with another, more-distant white dwarf.

"This is the first millisecond pulsar found in such a system, and we immediately recognized that it provides us a tremendous opportunity to study the effects and nature of gravity," Ransom said.

The scientists began an intensive observational program using the GBT, the Arecibo radio telescope in Puerto Rico, and the Westerbork Synthesis Radio Telescope in the Netherlands. They also studied the system using data from the Sloan Digital Sky Survey, the GALEX satellite, the WIYN telescope on Kitt Peak, Arizona, and the Spitzer Space Telescope.

"The gravitational perturbations imposed on each member of this system by the others are incredibly pure and strong," Ransom said. "The millisecond pulsar serves as an extremely powerful tool for measuring those perturbations incredibly well," he added.

By very accurately recording the time of arrival of the pulsar's pulses, the scientists were able to calculate the geometry of the system and the masses of the stars with unparalleled precision.

"We have made some of the most accurate measurements of masses in astrophysics," said Anne Archibald, of the Netherlands Institute for Radio Astronomy. "Some of our measurements of the relative positions of the stars in the system are accurate to hundreds of meters," she said. Archibald led the effort to use the measurements to build a computer simulation of the system that can predict its motions.

The research on this system used techniques dating back to those used by Issac Newton to study the Earth-Moon-Sun system, combined with the "new" gravity of Albert Einstein, which was required to make the precise measurements. In turn, the scientists said, the system promises a chance to point the way to the next theory of gravity.

The system gives the scientists the best opportunity yet to discover a violation of a concept called the Equivalence Principle. This principle states that the effect of gravity on a body does not depend on the nature or internal structure of that body.

The most famous experiments illustrating the equivalence principle are Galileo's reputed dropping of two balls of different weights from the Leaning Tower of Pisa and Apollo 15 Commander Dave Scott's dropping of a hammer and a falcon feather while standing on the airless surface of the Moon in 1971. (While there is no confirmation that Galileo actually performed the experiment from the Leaning Tower, he did demonstrate the principle by rolling balls down inclined planes, an experiment that often is repeated in introductory physics laboratories.)

"While Einstein's Theory of General Relativity has so far been confirmed by every experiment, it is not compatible with quantum theory. Because of that, physicists expect that it will break down under extreme conditions," Ransom explained. "This triple system of compact stars gives us a great opportunity to look for a violation of a specific form of the equivalence principle called the Strong Equivalence Principle," he added.

When a massive star explodes as a supernova and its remains collapse into a superdense neutron star, some of its mass is converted into gravitational binding energy that holds the dense star together. The Strong Equivalence Principle says that this binding energy still will react gravitationally as if it were mass. Virtually all alternatives to General Relativity hold that it will not.

"This system offers the best test yet of which is the case," Ransom said.

Under the strong equivalence principle, the gravitational effect of the outer white dwarf would be identical for both the inner white dwarf and the neutron star. If the strong equivalence principle is invalid under the conditions in this system, the outer star's gravitational effect on the inner white dwarf and the neutron star would be slightly different and the high-precision pulsar timing observations could easily show that.

"By doing very high-precision timing of the pulses coming from the pulsar, we can test for such a deviation from the strong equivalence principle at a sensitivity several orders of magnitude greater than ever before available," said Ingrid Stairs of the University of British Columbia. "Finding a deviation from the Strong Equivalence Principle would indicate a breakdown of General Relativity and would point us toward a new, correct theory of gravity," she added.

"This is a fascinating system in many ways, including what must have been a completely crazy formation history, and we have much work to do to fully understand it," Ransom said.

Ransom, Archibald and Stairs were on an international team of researchers that reported their findings in the online edition of the journal Nature on January 5.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>