Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing the Mystery of the Venus Fly Trap's Botanical Bite

19.11.2012
Plants lack muscles, yet in only a tenth of a second, the meat-eating Venus fly trap hydrodynamically snaps its leaves shut to trap an insect meal.

This astonishingly rapid display of botanical movement has long fascinated biologists. Commercially, understanding the mechanism of the Venus fly trap's leaf snapping may one day help improve products such as release-on-command coatings and adhesives, electronic circuits, optical lenses, and drug delivery.

Now a team of French physicists from the National Center for Scientific Research (CNRS) and Aix-Marseille University in Marseille, France, is working to understand this movement. They will present their findings at 65th meeting of the American Physical Society’s (APS) Division of Fluid Dynamics (DFD), Nov. 18 – 20, 2012, in San Diego, Calif.

The work extends findings by Dr. Yoël Forterre and researchers from Harvard University who discovered several years ago that the curvature of the Venus fly-trap's leaf changes while closing due to a snap-buckling instability in the leaf structure related to the shell-like geometry of the leaves. Mathieu Colombani, Ph.D. student in Forterre's laboratory is now conducting experiments to elucidate the physical mechanisms behind this movement. "The extremely high pressure inside the Venus fly trap cells prompted us to suspect that changes with a cell's pressure regime could be a key component driving this rapid leaf movement," he notes.

The Colombai team uses a microfluidic pressure probe to target and measure individual cells. This is a tricky experiment because it requires the living plant to be immobilized with dental silicone paste while the probe is inserted using a micromanipulator guided by binoculars. They take pressure measurements before and after leaf closure. They also measure cell wall elasticity by injecting or removing a known amount of liquid and recording the cellular responses, as well as take other measurements. "By measuring osmotic pressure and elasticity of leaf cells we hope to come closer to explaining the snapping mechanism,'' Colombani explains.

The talk, “How the Venus flytrap actively snaps: hydrodynamic measurements at the cellular level,” is at 4:45 p.m. on Sunday, Nov. 18, in Room 28C.

http://absimage.aps.org/image/DFD12/MWS_DFD12-2012-000207.pdf

MORE MEETING INFORMATION
The 65th Annual Meeting of the American Physical Society (APS) Division of Fluid Dynamics will take place from November 18-20, 2012, in San Diego, Calif. It will bring together researchers from across the globe to address some of the most important questions in modern astronomy, engineering, alternative energy, biology, and medicine. All meeting information, including directions to the Convention Center, is at: http://apsdfd2012.ucsd.edu/
USEFUL LINKS
Main Meeting Web Site: http://apsdfd2012.ucsd.edu/
Searchable Abstracts: http://meeting.aps.org/Meeting/DFD12/APS_epitome
Directions and Maps: http://apsdfd2012.ucsd.edu/?page=Venue_and_Maps
PRESS REGISTRATION
Credentialed full-time journalists and professional freelance journalists working on assignment for major publications or media outlets are invited to attend the conference free of charge. If you are a reporter and would like to attend, please contact Charles Blue (cblue@aip.org, 301-209-3091).
SUPPORT DESK FOR REPORTERS
A media-support desk will be available. Press announcements and other news will be available in the Virtual Press Room (see below).
VIRTUAL PRESS ROOM
The APS Division of Fluid Dynamics Virtual Press Room will be launched in mid-November and will feature news releases, graphics, videos, and other information to aid in covering the meeting on site and remotely. See: http://www.aps.org/units/dfd/pressroom/index.cfm
GALLERY OF FLUID MOTION
Every year, the APS Division of Fluid Dynamics hosts posters and videos that show evocative images and graphics from either computational or experimental studies of flow phenomena. The outstanding entries are selected for their artistic content, originality, and ability to convey information. They will be honored during the meeting, placed on display at the 2013 APS March Meeting, and appear in the annual Gallery of Fluid Motion article in the American Institute of Physics' journal, Physics of Fluids.

Selected entries from the Gallery of Fluid Motion will be hosted as part of the Fluid Dynamics Virtual Press Room. In mid-November, when the Virtual Press Room is launched, another announcement will be sent out.

This release was prepared by the American Institute of Physics (AIP) on behalf of the American Physical Society’s (APS) Division of Fluid Dynamics (DFD).

ABOUT THE APS DIVISION OF FLUID DYNAMICS
The Division of Fluid Dynamics of the American Physical Society (APS) exists for the advancement and diffusion of knowledge of the physics of fluids with special emphasis on the dynamical theories of the liquid, plastic and gaseous states of matter under all conditions of temperature and pressure. See: http://www.aps.org/units/dfd/

Charles E. Blue | EurekAlert!
Further information:
http://www.aps.org

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>