Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In the planetary nursery

31.01.2013
Astronomers determine the mass of the disk of gas and dust surrounding the star TW Hydrae

The disk surrounding the young star TW Hydrae is regarded as a prototypical example of planetary nurseries. Due to its comparatively close proximity of 176 light-years, the object plays a key role in cosmological birth models.


The birthplace of planets: New measurements that Thomas Henning from the Max Planck Institute for Astronomy in Heidelberg assisted in carrying out have resulted in a greater mass for the disk of gas and dust surrounding the young star TW Hydrae than previously assumed. The illustration depicts an artist’s conception of the disk. © Axel M. Quetz (MPIA)

Using the Herschel Space Telescope, researchers including Thomas Henning from the Max Planck Institute for Astronomy in Heidelberg have, for the first time, determined the mass of the disk very precisely. The new value is larger than previous estimates and proves that planets similar to those of our solar system can form in this system. In addition, the observations are an example of how, in the world of science, not everything can be planned for.

Where Egyptologists have their Rosetta Stone and geneticists their Drosophila fruit flies, astronomers studying planet formation have TW Hydrae: A readily accessible sample object with the potential to provide foundations for an entire area of study. TW Hydrae is a young star with about the same mass as the Sun. It is surrounded by a protoplanetary disk: a disk of dense gas and dust in which small grains of ice and dust clump to form larger objects and, eventually, into planets. This is how our Solar System came into being more than 4 billion years ago.

What is special about the TW Hydrae disk is its proximity to Earth: at a distance of 176 light-years from Earth, this disk is two-and-a-half times closer to us than the next nearest specimens, giving astronomers an unparalleled view of this highly interesting specimen – if only figuratively, because the disk is too small to show up on an image; its presence and properties can only be deduced by comparing light received from the system at different wavelengths (that is, the object's spectrum) with the prediction of models.

In consequence, TW Hydrae has one of the most frequently observed protoplanetary disks of all, and its observations are a key to testing current models of planet formation. That's why it was especially vexing that one of the fundamental parameters of the disk remained fairly uncertain: The total mass of the molecular hydrogen gas contained within the disk. This mass value is crucial in determining how many and what kinds of planets can be expected to form.

Previous mass determinations were heavily dependent on model assumptions; the results had significant error bars, spanning a mass range between 0.5 and 63 Jupiter masses. The new measurements exploit the fact that not all hydrogen molecules are created equal: Some very few of them contain a deuterium atom – where the atomic nucleus of hydrogen consists of a single proton, deuterium has an additional neutron. This slight change means that these "hydrogen deuteride" molecules consisting of one deuterium and one ordinary hydrogen atom emit significant infrared radiation related to the molecule's rotation.

The Herschel Space Telescope provides the unique combination of sensitivity at the required wavelengths and spectrum-taking ability ("spectral resolution") required for detecting the unusual molecules. The observation sets a lower limit for the disk mass at 52 Jupiter masses, with an uncertainty ten times smaller than the previous result. While TW Hydrae is estimated to be relatively old for a stellar system with disk (between 3 and 10 million years), this shows that there is still ample matter in the disk to form a planetary system larger than our own (which arose from a much lighter disk).

On this basis, additional observations, notably with the millimetre/submillimetre array ALMA in Chile, promise much more detailed future disk models for TW Hydrae – and, consequently, much more rigorous tests of theories of planet formation.

The observations also throw an interesting light on how science is done – and how it shouldn't be done. Thomas Henning explains: "This project started in casual conversation between Ted Bergin, Ewine van Dishoek and me. We realized that Herschel was our only chance to observe hydrogen deuteride in this disk – way too good an opportunity to pass up. But we also realized we would be taking a risk. At least one model predicted that we shouldn't have seen anything! Instead, the results were much better than we had dared to hope."

TW Hydrae holds a clear lesson for the committees that allocate funding for scientific projects or, in the case of astronomy, observing time on major telescopes – and which sometimes take a rather conservative stance, practically requiring the applicant to guarantee their project will work. In Henning's words: "If there's no chance your project can fail, you're probably not doing very interesting science. TW Hydrae is a good example of how a calculated scientific gamble can pay off."

Contact

Prof. Dr. Thomas Henning,
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-200
Fax: +49 6221 528-339
Email: henning@­mpia.de
Dr. Markus Pössel,
Max Planck Institute for Astronomy, Heidelberg
Phone: +49 6221 528-261
Email: poessel@­mpia.de
Background information
Whenever astronomers want to estimate the abundance of some compound, they search for characteristic light announcing the compound's presence. But this doesn't work for molecular hydrogen, as hydrogen molecules do not emit detectable radiation.
Original publication
E. A. Bergin, Th. Henning et al.
An Old Disk That Can Still Form a Planetary System
Nature, 31 January 2013

Prof. Dr. Thomas Henning | Max-Planck-Institute
Further information:
http://www.mpg.de/6887745/TW-Hydrae

More articles from Physics and Astronomy:

nachricht Nanotechnology for energy materials: Electrodes like leaf veins
27.09.2016 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht First quantum photonic circuit with electrically driven light source
27.09.2016 | Westfälische Wilhelms-Universität Münster

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>