Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Much faster than a speeding bullet, planets and stars escape the Milky Way

Idan Ginsburg, a graduate student in Dartmouth's Department of Physics and Astronomy, studies some of the fastest moving objects in the cosmos.

When stars and their orbiting plants wander too close to the supermassive black hole at the center of the Milky Way, their encounter with the black hole's gravitational force can either capture them or eject them from the galaxy, like a slingshot, at millions of miles per hour.

Although their origin remains a mystery and although they are invisible, black holes found at galaxy centers make their presence known through the effects they have on their celestial surroundings. The Milky Way's black hole, a monster with a mass four million times that of the Sun, feeds on some of its neighbors and thrusts others out into the intergalactic void.

It's the expelled objects that "become hypervelocity planets and stars," say Ginsburg. "What we learn from these high-speed travelers has significance for our understanding of planetary formation and evolution near the central black hole."

Ginsburg, along with his doctoral adviser Professor Gary Wegner, and Harvard Professor Abraham Loeb are publishing a paper in the Monthly Notices of the Royal Astronomical Society. It describes how the team constructed computer simulations of these hypervelocity bodies as a means to understanding the dynamics involved. "The paper is a 'call to arms' for other astronomers to join the search," Ginsburg announces.

Born in Israel, Ginsburg came to the United States as a child and grew up as a Midwesterner. After high school in Lawrence, Kan., graduating from the University of Illinois at Urbana-Champaign, and studies at Harvard, Ginsburg came to Dartmouth almost five years ago.

For the origin of hypervelocity bodies, Ginsburg and his colleagues point to the close interaction of a binary star system—two stars orbiting a common center—with a massive black hole. The likely scenario is the black hole draws one of the pair into its gravitational well while simultaneously ejecting the other at 1.5 million miles per hour. More than 20 of these hypervelocity stars have been identified in the Milky Way.

"You can also have a lone hypervelocity planet, peeled away from its star and ejected from the black hole. The same mechanism that produces a hypervelocity star produces a hypervelocity planet," Ginsburg explains. "But because it is so small and traveling up to 30 million miles per hour, it cannot be seen. That doesn't mean they won't eventually be found, but currently it is beyond the limitations of our technology."

Ginsburg contends, however, that you could see a hypervelocity star ejected with planets still in tow. In this case, you might be able to see the planets as they cross in front of the star like an eclipse, appearing as a dip in its light curve. While the paper discusses the lone hypervelocity planets, it also draws attention to the planets rotating around the hypervelocity stars.

"That is something that we can detect now," Ginsburg says, "which I think makes it very interesting. … As of yet nobody has looked for these planets transiting hypervelocity stars. We are telling people in this paper that you should look for these."

Joseph Blumberg | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>