Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diagnosis Just a Breath Away with New Laser

03.02.2014
University of Adelaide physics researchers have developed a new type of laser that will enable exciting new advances in areas as diverse as breath analysis for disease diagnosis and remote sensing of critical greenhouse gases.

Published in the journal Optics Letters, the researchers from the University’s Institute for Photonics and Advanced Sensing and the School of Chemistry and Physics describe how they have been able to produce 25 times more light emission than other lasers operating at a similar wavelength – opening the way for detection of very low concentrations of gases.

“This laser has significantly more power and is much more efficient than other lasers operating in this frequency range,” says Ori Henderson-Sapir, PhD researcher. “Using a novel approach, we’ve been able to overcome the significant technical hurdles that have prevented fibre lasers from producing sufficient power in the mid-infrared.”

The new laser operates in the mid-infrared frequency range – the same wavelength band where many important hydrocarbon gases absorb light.

“Probing this region of the electromagnetic spectrum, with the high power we’ve achieved, means we will be able to detect these gases with a high degree of sensitivity,” says Project Leader Dr David Ottaway. “For instance, it should enable the possibility of analysing trace gases in exhaled breath in the doctors’ surgery.”

Research has shown that with various diseases, minute amounts of gases not normally exhaled can be detected in the breath; for example, acetone can be detected in the breath when someone has diabetes.

Other potential applications include detection in the atmosphere of methane and ethane which are important gases in global warming.

“The main limitation to date with laser detection of these gases has been the lack of suitable light sources that can produce enough energy in this part of the spectrum,” says Dr Ottaway. “The few available sources are generally expensive and bulky and, therefore, not suitable for widespread use.”

The new laser uses an optical fibre which is easier to work with, less bulky and more portable, and much more cost effective to produce than other types of laser.

The researchers, who also include Jesper Munch, Emeritus Professor of Experimental Physics, reported light emission at 3.6 microns – the deepest mid-infrared emission from a fibre laser operating at room temperature. They have also shown that the laser has the promise of efficient emission across a large wavelength spectrum from 3.3-3.8 micron.

“This means it has incredible potential for scanning for a range of gases with a high level of sensitivity, with great promise as a very useful diagnostic and sensing tool,” says Dr Ottaway.

This research was supported by the State Government through the Premiers Science Research Foundation (PSRF).

Media Contact:
Dr David Ottaway
Senior Lecturer, School of Chemistry & Physics
Institute for Photonics & Advanced Sensing
The University of Adelaide
Phone: +61 8 8313 5165
Mobile: +61 430 325 099
david.ottaway@adelaide.edu.au
Mr Ori Henderson-Sapir
PhD Candidate
School of Chemistry & Physics
Institute for Photonics & Advanced Sensing
The University of Adelaide
Mobile: +61 403 119 776
ori.henderson-sapir@adelaide.edu.au

Robyn Mills | Newswise
Further information:
http://www.adelaide.edu.au

More articles from Physics and Astronomy:

nachricht Streamlining accelerated computing for industry
24.08.2016 | DOE/Oak Ridge National Laboratory

nachricht Lehigh engineer discovers a high-speed nano-avalanche
24.08.2016 | Lehigh University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>