Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Accelerating neutral atoms on a table top

28.01.2013
Charged particle accelerators have become crucially important to modern day life, be it in health care for cancer treatment or for answering important fundamental scientific questions like the existence of the HIGGS boson, the so called 'God particle'.

In a simple picture, charged particles like electrons and protons are accelerated between two end plates across which an electrical voltage is applied.


Highly charged Argon ions (orange) exploding from a nanocluster are reduced to neutrals (blue) in a mm accelerator due to dense excited clusters (green).

Credit: Dr. Rajeev Rajendran, TIFR

High energies need high voltages (millions and billions of volts) and long acceleration paths in giant sized machines – for instance the trillion volt machine called the 'large hadron collider' (LHC) which discovered the Higgs boson, circles over 27 km underground in Geneva! A new concept for a compact accelerator was discovered in the last decade using high powered, short pulses of laser light.

Alternating large electric fields of the light can be transformed in plasmas to create quasi static fields that can produce hundreds of millions volt accelerating voltages just over millimeter lengths on a table top!

How do we accelerate neutral particles- i.e. particles that cannot be energized by electrical voltages? And do it over millimeters rather than hundreds of meters and moreover using lasers? Research at Ultra Short Pulse High Intensity Lab in TIFR has now found a novel scheme that can do precisely this. The concept uses the ability of powerful lasers to strip nearly 8 electrons per atom in a nano sized, cooled aggregate of argon atoms- a nano piece of ice. A 40,000 atom cluster of argon is charged to 320,000 by a laser that lasts only a 100 billionth of a millionth of a second.

Such a super highly charged ice piece explodes soon after, accelerating the charged atoms (Ions) to a million electron volts of energy. The TIFR research now found that all the expelled electrons can be put back into the charged ion that has been accelerated so that it now reverts to being a neutral atom but at high energies. To top it all, this process is nearly 100% efficient at neutralizing the speeding ions and converting them to fast atoms!

Accelerated neutral atoms are very important for many applications. Unaffected by electric or magnetic fields, they penetrate deeper in solids than electrons/ions and thereby create high finesse microstructures for novel electronics and optical devices. Fast atoms are used both as diagnostics and heating sources in Tokomak machines like the ITER (International Thermonuclear Experimental Reactor) in France, that are being developed to create sustained thermo-nuclear fusion. The TIFR scheme can produce a point source of fast neutral atoms close to the location of an intended application.

As the old adage goes, staying neutral under extreme provocation certainly has its advantages!

Prof. M. Krishnamurthy | EurekAlert!
Further information:
http://www.tifr.res.in

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>