Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A deeper look at interfaces

16.01.2014
A Deeper Look at Interfaces: Researchers at Berkeley Lab’s Advanced Light Source Develop New Technique for Probing Subsurface Electronic Structure

“The interface is the device,” Nobel laureate Herbert Kroemer famously observed, referring to the remarkable properties to be found at the junctures where layers of different materials meet.


Experimental setup and basic principles of SWARPES shows (a) the experimental setup; (b) diagram of the multilayer STO and LSMO film; (c) SW-excited photoemission intensity rocking curves and (d) simulated intensity of the x-ray standing wave field as a function of depth and grazing incidence angle.

In today’s burgeoning world of nanotechnology, the interfaces between layers of metal oxides are becoming increasingly prominent, with applications in such high-tech favorites as spintronics, high-temperature superconductors, ferroelectrics and multiferroics. Realizing the vast potential of these metal oxide interfaces, especially those buried in subsurface layers, will require detailed knowledge of their electronic structure.

A new technique from an international team of researchers working at Berkeley Lab’s Advanced Light Source (ALS) promises to deliver the goods. In a study led by Charles Fadley, a physicist who holds joint appointments with Berkeley Lab’s Materials Sciences Division and the University of California Davis, where he is a Distinguished Professor of Physics, the team combined two well-established techniques for studying electronic structure in crystalline materials into a new technique that is optimized for examining electronic properties at subsurface interfaces. They call this new technique SWARPES, for Standing Wave Angle-Resolved Photoemission Spectroscopy.

“SWARPES allows us for the first time to selectively study buried interfaces with either soft or hard x-rays,” Fadley says. “The technique can be applied to any multilayer prototype device structure in spintronics, strongly correlated/high-TC superconductors, or semiconductor electronics. The only limitations are that the sample has to have a high degree of crystalline order, and has to be grown on a nanoscale multilayer mirror suitable for generating an x-ray standing wave.”

As the name indicates, SWARPES combines the use of standing waves of x-rays with ARPES, the technique of choice for studying electronic structure. A standing wave is a vibrational pattern created when two waves of identical wavelength interfere with one another: one is the incident x-ray and the other is the x-ray reflected by a mirror. Interactions between standing waves and core-level electrons reveal much about the properties of each atomic species in a sample. ARPES from the outer valence levels is the long-standing spectroscopic workhorse for the study of electronic structure. X-rays striking a material surface or interface cause the photoemission of electrons at angles and kinetic energies that can be measured to obtain detailed electronic energy levels of the sample. While an extremely powerful tool, ARPES, a soft x-ray technique, is primarily limited to the study of near-surface atoms. It’s harder x-ray cousin, HARPES, makes use of more energetic x-rays to effectively probe subsurface interfaces, but the addition of the standing wave capability provides a much desired depth selectivity.

Experimental setup and basic principles of SWARPES shows (a) the experimental setup; (b) diagram of the multilayer STO and LSMO film; (c) SW-excited photoemission intensity rocking curves and (d) simulated intensity of the x-ray standing wave field as a function of depth and grazing incidence angle.

Experimental setup and basic principles of SWARPES shows (a) the experimental setup; (b) diagram of the multilayer STO and LSMO film; (c) SW-excited photoemission intensity rocking curves and (d) simulated intensity of the x-ray standing wave field as a function of depth and grazing incidence angle. (click for high-res version)

“The standing wave can be moved up and down in a sample simply by rocking the angle of incidence around the Bragg angle of the mirror,” says Alexander Gray, a former member of Fadley’s UC Davis research group and affiliate with Berkeley Lab’s Materials Sciences Division, who is now a postdoctoral associate at Stanford/SLAC. “Observing an interface between a ferromagnetic conductor (lanthanum strontium manganite) and an insulator (strontium titanate), which constitute a magnetic tunnel junction used in spintronic logic circuits, we’ve shown that changes in the electronic structure can be reliably measured, and that these changes are semi-quantitatively predicted by theory at several levels. Our results point to a much wider use of SWARPES in the future for studying the electronic properties of buried interfaces of many different kinds.”

Fadley, Gray and their collaborators carried out their SWARPES tests at ALS Beamline 7.0.1. The Advanced Light Source is a U.S. Department of Energy (DOE) national user facility and Beamline 7.0.1 features a premier endstation for determining the electronic structure of metals, semiconductors and insulators. Additional corroborating measurements concerning the interface atomic structure were performed at the National Center for Electron Microscopy (NCEM), another DOE national user facility hosted at Berkeley Lab.

Results of this study have been published in Europhysics Letters (EPL). The paper is titled “Momentum-resolved electronic structure at a buried interface from soft X-ray standing-wave angle-resolved photoemission.” Gray was the lead author, Fadley the corresponding author. For a full list of co-authors and their host institutes download the paper here:
http://www.physics.ucdavis.edu/fadleygroup/SWARPES_EPL_104_17004_2013.
reprint.pdf
This research was supported primarily by the U.S. Department of Energy (DOE) Office of Science.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Astronomers identify a young heavyweight star in the Milky Way
22.08.2016 | University of Cambridge

nachricht Venus-like exoplanet might have oxygen atmosphere, but not life
19.08.2016 | Harvard-Smithsonian Center for Astrophysics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>