Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar Scientists Develop Gene Test to Accurately Classify Brain Tumors

19.02.2014
Computer Model of Gene Transcript Variants May Aid Doctors in Personalizing Therapies

Scientists at The Wistar Institute have developed a mathematical method for classifying forms of glioblastoma, an aggressive and deadly type of brain cancer, through variations in the way these tumor cells “read” genes.

Their system was capable of predicting the subclasses of glioblastoma tumors with 92 percent accuracy. With further testing, this system could enable physicians to accurately predict which forms of therapy would benefit their patients the most.

Their research was performed in collaboration with Donald M. O’Rourke, M.D., a neurosurgeon at the University of Pennsylvania Brain Tumor Center, who provided the glioblastoma samples necessary to validate the Wistar computer model. Their findings were published online in the journal Nucleic Acids Research.

“It has become increasingly obvious that understanding the molecular makeup of each patient tumor is the key to personalizing cancer treatments for individual patients,” said Ramana Davuluri, Ph.D., Wistar’s Tobin Kestenbaum Family Professor and associate director of Wistar’s Center for Systems and Computational Biology. “We have developed a computational model that will allow us to predict a patient’s exact variety of glioblastoma based on the transcript variants a given tumor produces.”

“A gene can produce multiple variants, in the form of transcript variants and protein-isoforms. We found that when you use the gene expression information at variant/isoform-level, the statistical analyses recaptured the four known molecular subgroups but with a significant survival difference among the refined subgroups.” said Davuluri. “Using patient data, we found that certain subgroups when combined with patient age, for example, could predict better outcomes using a given course of therapy.”

“As more targeted therapies come into use, this is exactly the sort of information clinicians will need to provide the best hope of survival for their patients,” Davuluri said. “In time, we think this could form the basis of a clinical test that will help oncologists decide a patient’s course of treatment.”

Glioblastoma multiforme is the most lethal of the malignant adult brain tumors, and accounts for over 50 percent of all cases of brain cancer. Even with aggressive combination therapies, the prognosis remains bleak, with median patient survival of 15 months after diagnosis. The disease is also molecularly heterogeneous, that is, composed of subtypes that are not genetically alike or produce the same array of proteins. Genetic data from the Cancer Genome Atlas (TCGA) consortium has led to the identification of four subtypes of glioblastoma, but Davuluri and his researchers sought to find a way to quickly identify which patient was which subtype.

In previous studies, Davuluri and his Wistar colleagues have established how changes in the way a cell reads its own DNA can create multiple variations of a single protein. These variant proteins are called isoforms, and they are produced as cells alter how they transcribe a given gene into RNA. Slight changes in how the cellular machine reads a gene can result in protein isoforms with subtle differences in enzymatic activity or longevity.

For example, their earlier research determined how human brains produce different isoforms of specific proteins throughout their lives. Developing fetal brains produce different isoforms of certain genes than adult brains. They also found that changes that trigger the production of the wrong isoform at the wrong time could lead to cancer.

In the Nucleic Acids Research study, the researchers combined assays of these protein isoforms with a computer model they call PIGExClass, or the Platform-independent Isoform-level Gene-EXpression based Classification-system. To categorize glioblastomas with PIGExClass, Davuluri and his colleagues first began with Cancer Genome Atlas data to develop a set of 121 isoform variants whose combination of differences could denote a specific subtype of the brain cancer. PIGExClass is, essentially, a software that ranks gene isoform data into sets based on a set of pre-determined values. The researchers found that, by using this classification system, they could predict the subtype of glioblastoma in the database with 92 percent accuracy.

“When we knew what combination of isoforms could create a specific signature for each type of glioblastoma, we could then create a simple laboratory assay that would look for these differences in patient samples,” Davuluri said. “In this case the test would measure variations in the RNA abundance associated with these 121 isoforms that make up the signature.”

With this new assay in hand, the researchers validated their research using 206 independent samples from the University of Pennsylvania Brain Tumor Tissue Bank. According to Davuluri, when you accounted for differences in the makeup of the pools of patients between TCGA and Penn, the accuracy of the assay remained the same.

Co-authors include Luke Macyszyn, M.D., a neurosurgery resident at the University of Pennsylvania, and Wistar scientists Sharmistha Pal, Ph.D., Yingtao Bi, Ph.D., and Professor Louise C. Showe, Ph.D. This study was partially funded by the National Institutes of Health [award number R01LM011297].

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today’s Discoveries – Tomorrow’s Cures.

Greg Lester | EurekAlert!
Further information:
http://www.wistar.org

More articles from Health and Medicine:

nachricht Newly discovered 'multicomponent' virus can infect animals
26.08.2016 | US Army Medical Research Institute of Infectious Diseases

nachricht Symmetry crucial for building key biomaterial collagen in the lab
26.08.2016 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>