Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study reveals potential route to bladder cancer diagnostics, treatments

12.02.2014
Researchers at the UNC Lineberger Comprehensive Cancer Center found that bladder cancer subtypes are genetically similar to breast cancer subtypes.

Researchers at the UNC School of Medicine conducted a comprehensive genetic analysis of invasive bladder cancer tumors to discover that the disease shares genetic similarities with two forms of breast cancer.

The finding is significant because a greater understanding of the genetic basis of cancers, such as breast cancers, has in the recent past led to the development of new therapies and diagnostic aids.

Bladder cancer, which is the fourth most common malignancy in men and ninth in women in the United States, claimed more than 15,000 lives last year.

The analysis of 262 bladder cancer tumors, published online in the Proceedings of the National Academy of Sciences, revealed that the invasive form of the disease can be classified into two distinct genetic subtypes – basal-like and luminal – which were shown to be highly similar to the basal and luminal subtypes of breast cancer first described by Charles Perou, PhD, the May Goldman Shaw Distinguished Professor of Molecular Oncology at UNC Lineberger.

“It will be particularly interesting to see whether the bladder subtypes, like the breast subtypes, are useful in stratification for therapy,” said lead author William Kim, MD, a researcher at the UNC Lineberger Comprehensive Cancer Center and associate professor in the departments of genetics and medicine at UNC.

Mapping genetic signaling pathways of breast cancer subtypes has led to the development of drugs to treat patients and diagnostic aids that help physicians determine the best course of therapy for patients. Because the identified bladder cancer subtypes share many of the same genetic signaling pathways of breast cancer, researchers hope that the identification of the genetic subtypes can lead to similar advances.

“Currently there are no approved targeted therapies for bladder cancer,” said lead author Jeffrey Damrauer, graduate student in the Curriculum of Genetics and Molecular Biology at the UNC School of Medicine. “Our hope is that the identification of these subtypes will aid in the discovery of targetable pathways that will advance bladder cancer treatment.”

The study also revealed a possible answer to why women diagnosed with bladder cancer have overall poorer outcomes compared to males. Analysis showed that female patients had a significantly higher incidence of the deadlier basal-like tumors. But researchers said that more research is needed before a definite link between the subtype and survival rate can be confirmed.

Dr. Kim’s lab has developed a gene map – BASE47 – that proved successful as a prognostic aid when applied to the tumor samples in the study. The PAM50 genetic test, a similar genetic map developed in the Perou lab, was recently approved as a clinical diagnostic tool by the FDA.

Additional LCCC members contributing to this work are Katherine Hoadley, PhD; David Chism, MD; Cheng Fan; Christopher Tiganelli, MD; Sara Wobker, MD; Jen Jen Yeh, MD; Matthew Milowsky, MD; and Joel Parker, PhD.

This work was supported by National Institutes of Health Grant R01 CA142794 and Integrative Vascular Biology Training Grant T32-HL069768. Dr. Kim is a Damon Runyon Merck Clinical Investigator. Dr. Kim and Damrauer are inventors on the patent for the BASE47.

William Davis | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Health and Medicine:

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

nachricht Alzheimer’s: Cellular Mechanism Provides Explanation Model for Declining Memory Performance
21.09.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>