Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Researchers Find Culprit Behind Skeletal Muscle Disease

29.01.2014
A University of Arizona doctoral candidate has shown for the first time that genetic mutations in the titin gene can cause skeletal muscle myopathy, a disease in which muscle fibers do not function properly, resulting in muscle weakness. Myopathic disease can affect heart muscles as well as skeletal muscles, and titin is responsible for many problems associated with heart disease.

The research was done by Danielle Buck, a doctoral candidate in the UA’s Department of Molecular and Cellular Biology. She worked under the direction of Henk Granzier, a professor in cellular and molecular medicine and physiology, who has studied titin for years.

Previous studies had shown that alterations in titin are involved in muscular myopathies, but whether these deviations actually cause myopathies, or merely result from them, has remained a mystery.

Buck has shown that mutations in the titin gene do in fact cause myopathies in skeletal muscles. Her study, published today in the Journal of General Physiology, could be an important first step in developing treatments to address causes of the disease.

“Patients with muscle myopathy experience muscle weakness, but not a lot has been known about what is going wrong at the molecular and genetic level, except that titin is often involved,” Buck said. “Many patients with heart disease also have mutations in titin. So to develop treatments we need to understand the structure of titin and how it can cause or respond to disease.”

“With about 35,000 amino acids, titin is the largest protein known, roughly 100 times larger than typical proteins, which have only around several hundred amino acids,” Granzier explained. Amino acids are the building blocks of proteins.

Titin, he said, functions as a molecular spring that makes tissues elastic so that when they deform they can snap back again. “Titin is a vital determinant of the elasticity of skeletal and heart muscles, which is very important for normal muscular function,” he noted.

“Titin is like the stretchy material in a rubber balloon,” said Buck. “If you have a balloon that is too stretchy or too stiff, then it’s not going to be able to expand or contract. Tissues also need to have elasticity so that they can restore their original shape after they have been contracted.”

Conducting genetic testing for mutations in the titin gene and studying the defects in the protein have been challenging due to titin’s “enormous size,” Granzier said. “But excellent facilities at the University of Arizona have enabled researchers to make great impact and progress has recently accelerated.”

Buck’s research “has directly shown that introducing specific changes to the titin gene can lead to disease in skeletal muscles,” Granzier said. “We know now that titin itself can trigger the disease. Danielle’s research shows that this giant protein needs to be tuned just right or it can cause myopathies to develop in skeletal muscles.”

Buck’s research “also demonstrated for the first time that changing a part of the gene results in a cascade of additional damaging changes in the protein,” he added.

“We found that in skeletal muscles, deleting one area of titin can affect expression of the entire protein and other areas can subsequently be deleted as well,” Buck said. “Shortening titin leads to a cascade of effects that cause titin to be even shorter, and that causes the muscle to become very stiff.”

Buck approached her work from many levels, Granzier said. “She worked at the gene level, the transcription level, the protein level and the functional level of cells and tissues to get an integrative understanding of the changes that this genetic modification caused.”

“We try to look at all these levels so that we can get a deeper understanding of the mechanisms that give rise to disease,” he added. “It is a multidisciplinary study, from molecular and cellular biology to integrative physiology.”

Understanding what factors cause myopathies could enable researchers to reverse the disease in humans by developing medications to counter damaging activity of the gene, Buck said.

“The next step ideally would be to use this model as an avenue to find new future therapeutic targets,” she said.

Buck already has begun to forge into research around a possible cure for myopathies.

Granzier’s lab, including John Smith and Charles Chung, collaborated with researchers at the Tokyo Metropolitan Institute of Medical Science in Japan and at the University of Heidelberg in Germany. The study was supported by National Institutes of Health grants to Granzier as well as fellowships from the Bellows Foundation and the ARCS Foundation to Buck.

This story and photos are online:
http://uanews.org/story/ua-researchers-find-culprit-behind-skeletal-muscle-disease

Research paper: http://jgp.rupress.org/content/143/2/215

Contacts

Sources
Henk Granzier
Professor, Molecular and Cellular Biology and Physiology
520-626-3641
granzier@email.arizona.edu
Danielle Buck
Doctoral candidate, Molecular and Cellular Biology
dbuck1@email.arizona.edu
UANews Contact
Shelley Littin
319-541-1482
littin@email.arizona.edu

Shelley Littin | UANews
Further information:
http://www.arizona.edu

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>