Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Two-Step Immunotherapy Attacks Advanced Ovarian Cancer

Personalized Vaccine Made from Patients' Own Tumors Spurs Immune System

Most ovarian cancer patients are diagnosed with late stage disease that is unresponsive to existing therapies. In a new study, researchers from the Perelman School of Medicine at the University of Pennsylvania School of Medicine show that a two-step personalized immunotherapy treatment — a dendritic cell vaccine using patients’ own tumor followed by adoptive T cell therapy — triggers anti-tumor immune responses in these type of patients. Four of the six patients treated in the trial responded to the therapy, the investigators report this month in OncoImmunology.

"What we proved in this study is that this is a safe treatment strategy," says co-first author Lana Kandalaft, PharmD, MTR, PhD, research assistant professor of Obstetrics and Gynecology and director of clinical development in the Ovarian Cancer Research Center. "It is a walk in the park for patients, especially compared to standard chemotherapies and surgical treatments for ovarian cancer – literally, some patients left the clinic and went for a walk in a nearby park after their treatment."

The findings follow research by the study’s senior author, George Coukos, MD, PhD, director of the Ovarian Cancer Research Center at Penn, who showed in 2003 that women whose ovarian tumors were infiltrated by healthy immune cells, called T cells, tended to live longer than women whose tumors were devoid of T cells. That observation and other subsequent ones suggest the patient's immune system is trying to fight off the disease but can't quite muster the strength to beat it. Therefore, investigators have been trying to find ways using patients’ own tumor cells to boost the immune system's power.
In the current study, Coukos, Kandalaft, co-first author Daniel J. Powell Jr., PhD, research assistant professor of Pathology and Laboratory Medicine, and colleagues treated six women with advanced ovarian cancer in a two-staged immunotherapy protocol in which they utilized a dendritic cell vaccine created from tissue in the patients’ own tumor, which was stored at time of surgery. All of these women’s cancers had progressed on standard of care chemotherapy.

In the first segment of the study, the team prepared an individualized dendritic cell vaccine for each patient. They harvested dendritic cells from each patient using apheresis, the same process volunteers go through when they donate platelets or other blood products such as those collected for stem cell transplants. Kandalaft and colleagues then exposed each patient's dendritic cells to tumor extract produced from the woman's own tumor, which teaches the dendritic cells who the enemy is. After this priming, the investigators vaccinated each patient with her own dendritic cells and gave them a combination chemotherapy regimen of bevacizumab and cyclophosphamide. Because dendritic cells are like the generals of the immune system, they then induce other immune cells to take up the fight.
Of the six patients who received the dendritic cell vaccine, four developed an anti-tumor immune response, indicating that the approach was working. One of those patients had no measurable disease at study entry because all of it had been successfully removed during surgery. She remains in remission today, 42 months following vaccine treatment. The other three who had an immune response to the vaccine still had residual disease and went on to the second segment of treatment.

The team harvested T cells from each of these three women. Using a technique developed at Penn, they grew the cells in the laboratory, expanding their numbers exponentially, and then reintroduced them into each patient after she underwent a lymphodepleting chemotherapy regimen. Because the T cells had already been trained by the dendritic cell vaccine to attack the tumor cells, the adoptive T cell transfer amplifies the anti-tumor immune response.
Two of the women showed a restored immune response after the T cell transfer. One of the women continued to have stable disease, whereas the other had a complete response to the therapy.

The researchers say it is too early to say whether this type of therapy will be effective in a large number of ovarian cancer patients, but the early results are promising. First, and foremost, she notes, the two-step approach appears safe and well tolerated by the patients. Additionally, the team saw a correlation in both treatment steps between immune responses and clinical benefit, suggesting that it is, in fact, the immune response that is holding the disease in check.
With these encouraging results in hand, the team has opened a larger trial in which they have already enrolled about 25 women and aim for up to 30 more. The new protocol uses an improved vaccine platform and an optimized adoptive T cell transfer protocol. The PI of this study is Janos Tanyi, MD, PhD.

“Large clinical trials have shown that intensifying chemotherapy doesn't improve outcomes for women with advanced ovarian cancer,” Coukos says. “So we need to explore other avenues. We think the combinatorial approach of both immune and chemotherapy is the way to go.”

Other co-authors from Penn include Cheryl L. Chiang, Janos Tanyi, Sarah Kim, Kathy Montone, Rosemarie Mick, Bruce L. Levine, Drew A. Torigian, and Carl H. June. Co-author Marnix Bosch is from Northwest Biotherapeutics in Bethesda, MD.

This study was supported by National Cancer Institute Ovarian SPORE grant P01-CA83638, National Institution of Health R01FD003520-02, and the Ovarian Cancer Immunotherapy Initiative.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Holly Auer | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>