Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Unveil a New Cause of Familial Alzheimer’s Disease and Find Novel Protective Mechanism

Researchers in Germany and Japan have found out how a new form of familial (inherited) Alzheimer’s disease (AD) develops and have also detected a new mechanism in nerve cells which reduces the risk for this disease. Altogether, four different forms of inherited Alzheimer’s are now known.

These familial forms are rare, but very aggressive and typically affect individuals before the age of 60. The findings jointly obtained by Dr. Safak Caglayan and Professor Thomas Willnow from the Max Delbrück Center (MDC) Berlin-Buch, Germany, and by Professor Junichi Takagi from the University of Osaka, Japan, have now been published in Science Translational Medicine, 10.1126/scitranslmed.3007747)*.

Currently, about 35 million people suffer from AD worldwide. Those afflicted are confronted with the loss of function and eventual death of their nerve cells, a process which leads to the progressive loss of memory and to dementia. Inheritable (familial) forms of AD are rare. “About 0.5 – 1 per cent,” Professor Willnow estimates. Still, familial forms of the disease are informative for science as they provide insight into the disease’s genetic causes, which probably also play a role in the sporadic form of AD. Sporadic AD is the common form of age-related dementia affecting the vast majority of patients, but its causes are still unclear.

The major culprit in the occurrence of AD is a short protein fragment called amyloid-beta peptide, or A-beta for short. A-beta is produced in the nerve cells from the amyloid precursor protein (APP), a larger protein that is cut into pieces by molecular scissors (secretases). The production of A-beta is a normal physiological process which occurs in the brain of every healthy human being. The reason for the production of A-beta is still a matter of debate, but recent findings suggest that this peptide reduces the activity of nerve cells in order to keep them from overreacting.

A-beta becomes a problem when too much is produced, as is the case in the brain of patients at risk of AD. Overproduction of this peptide impairs the communication between nerve cells, causing memory deficits and cognitive impairment. In addition, too much A-beta results in the deposit of plaques in the brain that damage nerve cells even further. “Since the amount of A-beta in the brain constantly rises with the age of the individual, the risk of developing AD increases dramatically in ageing societies,” Professor Willnow explains.

Nerve cells produce protecting factor
Several years ago, Professor Willnow’s research group discovered that healthy neurons produce a factor which reduces the production of A-beta. This factor is the transport molecule SORLA (sorting protein-related receptor). They showed that mice that do not produce SORLA due to a gene defect accumulate more A-beta than normal mice. The researchers found the same phenomenon in humans: the amount of SORLA produced in the brain of AD patients was often lower than in the brain of individuals not suffering from dementia.

“Genetic studies by many research groups around the world support this hypothesis,” says Professor Willnow. These studies show that specific gene variations of SORLA which cause reduced production of this protecting factor are more often seen in AD patients than in others. This observation suggests that the brain of some individuals produces too little SORLA. “Their risk of developing AD is higher,” Professor Willnow points out. He assumes that high levels of SORLA in the brain slow down the process of AD, whereas low levels of SORLA increase the risk of the disease.

Proven: High levels of SORLA dramatically reduce A-beta
To test their hypothesis, Professor Willnow and his colleagues now wanted to find out if the brain really is protected from A-beta production when levels of SORLA are increased. For this purpose, they generated mice that carry an extra copy of the gene for SORLA in their genome. These transgenic mice not only produced four times as much SORLA in nerve cells as normal mice. Their increased levels of SORLA also drastically reduced the production of A-beta. With this experiment the researchers in Berlin were able to demonstrate that increased production of SORLA indeed protects the brain from too much A-beta.
Protecting factor already active within the nerve cells
In their studies Professor Willnow and his colleagues also uncovered how SORLA works. Normally, A-beta is released from producing cells in order to regulate the communication between the nerve cells. Now the researchers demonstrated that SORLA already gets hold of newly produced A-beta within the nerve cell. SORLA binds A-beta and transports it into a kind of cellular shredder, the lysosomes. “SORLA shuttles some A-beta into the lysomes and reduces the amount of A-beta that is released. Consequently, less A-beta accumulates in the brain and the damage to nerve cells is reduced,” Professor Willnow points out.
Findings also important for familial AD
The importance of these findings in transgenic mice for the human disease was further underscored when Professor Willnow’s group studied one particular mutation in the human SORLA gene found by French researchers in a family suffering from an inheritable form of AD. “We were able to show that the mutation is located exactly where SORLA binds to A-beta. In patients who carry this particular mutation SORLA cannot bind A-beta and shuttle it to lysosomes for destruction. Too much A-beta makes its way out of the nerve cells and increasingly blocks their communication,” Professor Willnow points out.
Screening for small molecules
“Now we are looking for small molecules which are able to increase the production of SORLA in the human brain. In the long run, those substances may be used to protect the brain of patients from overproduction of A-beta and slow down the progression of dementia,” Professor Willnow hopes.

*Lysosomal Sorting of Amyloid-b by the SORLA Receptor Is Impaired by a Familial Alzheimer’s Disease Mutation

Authors: Safak Caglayan1, Shizuka Takagi-Niidome2, Fan Liao3; Anne-Sophie Carlo1, Vanessa Schmidt1, Tilman Burgert1, Yu Kitago2, Ernst-Martin Füchtbauer4, Annette Füchtbauer4, David M. Holtzman3, Junichi Takagi2* and Thomas E. Willnow1*

Affiliations: 1Max Delbrück Center for Molecular Medicine, Berlin, Germany; 2Institute for Protein Research, Osaka University, Osaka, Japan; 3Department of Neurology, Washington University, and Department of Neurology, Hope Center for Neurological Disorders, St. Louis, US; and 4Department of Molecular Biology, Aarhus University, Aarhus, Denmark.

Barbara Bachtler
Press Department
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
in the Helmholtz Association
Robert-Rössle-Straße 10
13125 Berlin
Phone: +49 (0) 30 94 06 - 38 96
Fax: +49 (0) 30 94 06 - 38 33

Barbara Bachtler | Max-Delbrück-Centrum
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>