Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers discover how heart arrhythmia occurs

Researchers have discovered the fundamental biology of calcium waves in relation to heart arrhythmias.

The findings published this month in the January 19 edition of Nature Medicine outlines the discovery of this fundamental physiological process that researchers hope will one day help design molecularly tailored medications that correct the pathophysiology.

Heart arrhythmias cause the heart to beat irregularly, resulting in symptoms such as dizziness and fainting, or in severe cases, sudden arrhythmic death. While many factors contribute to the development of arrhythmias, including genetics, scientists know that a common mechanism of cardiac arrhythmias is calcium overload in the heart, i.e. calcium-triggered arrhythmias that can lead to sudden death. The underlying mechanism of these calcium-triggered arrhythmias has remained a mystery for decades.

Using a combination of molecular biology, electrophysiology, and genetically engineering mice, scientists at the University of Calgary's and Alberta Health Services' Libin Cardiovascular Institute of Alberta (Libin Institute)have discovered that a calcium-sensing-gate in the cardiac calcium release channel (ryanodine receptor) is responsible for initiation of calcium waves and calcium-triggered arrhythmias.

Utilizing a genetically modified mouse model they were able to manipulate the sensor and completely prevented calcium-triggered arrhythmias.

"The calcium-sensing- gate mechanism discovered here is an entirely novel concept with potential to shift our general understanding of ion channel gating, cardiac arrhythmogenesis, and the treatment of calcium-triggered arrhythmias," says SR Wayne Chen, PhD, the study's senior author and University of Calgary- Libin Institute researcher. "These findings open a new chapter of calcium signaling and the discovery fosters the possibilities of new drug interventions."

This work was supported by research grants from the Canadian Institutes of Health Research, the National Institutes of Health, the Heart and Stroke Foundation of Alberta, and the Canada Foundation for Innovation.

Marta Cyperli | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>