Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insulin Pills

27.02.2002


The issue of insulin-dependent diabetes has long been discussed. No wonder, as the problem concerns more than 5% of the world population. However, despite the enormous efforts and funds spent on its solution, the scientists so far have failed to replace the injections with pills. The difficulty is that insulin (like any other polypeptide) gets easily destroyed under the influence of proteolytic enzymes in the stomach and small intestines. The scientists have tried a variety of means: insulin plasters, inhalations, capsules covered with a special protective coating, but none of the above has ensured the required effect. The amount of insulin thus getting into the blood is insufficient for normal functioning of the organism.



Chemists from the the Topichev Institute for Petrochemical Synthesis have suggested a unique and efficient solution to the problem having split it into two parts. To ensure that the remedy gets into the blood out of the pill, it is required that the remedy slipped `safely` through the stomach - this is stage one. Then it is necessary to make sure that the remedy gets into the blood in the small intestines quicker than the enzymes would destroy it - this is stage two.

The first part of the problem can be solved easily. It is sufficient to cover the pill with a layer that is resistant to the stomach ferments action and dissolves once the pill gets into the intestine. Quite harmless polyacrylic or polymethacrylic acid suits this purpose, therefore the researchers have proposed to use it as a coating. However, in such case insulin will not `live` long enough - it will be destroyed by the enzymes earlier than it gets through the intestine walls. At this stage works the major specificity that differs the pills from all the previous remedy forms applied.


The researchers have suggested that the pills should be made of the pressed little grains of hydrogel, where three substances are introduced. The first substance is insulin per sei. It is not chemically bound with the hydrogel and therefore can be easily released. The second substance is an inhibitor which protect insulin against the enzymes. To ensure that the inhibitor does no harm to the organism, it is made chemically bound with the hydrogel. Thus it will react only with those enzyme molecules which try to penetrate into the hydrogel grain and to `eat up` the insulin from its surface. The hydrogel is indigestible by a human organism, so the bound inhibitor will not get into the blood and leave the organism in a natural way with the hydrogel grains.

And finally, it is necessary to retain the hydrogel grains near the intestine wall so that the insulin protected by the inhibitor against the enzyme attack could stick to the mucous membrane of the intestines and successfully get into the blood. Some `anchor` is required to achieve this. The scientists have proposed to use some polysaccharide as an anchor, the polysaccharide also being chemically bound with the hydrogel. The point is that the intestine wall contains the so-called lectins - the substances which interact with sugars. The lectins are quite capable of binding with polysaccharides on the surface of the hydrogel grains and holding them attached to the mucous membrane.

The last thing to do was to introduce three types of compounds into the hydrogel, namely insulin, enzyme inhibitor and polysaccharide serving as an anchor. However, the developers and patent holders have come to the conclusion that the process can be simplified - it is required to find a substance which could fulfil two functions simultaneously - of an `anchor` and of an inhibitor.

The scientists suggested that the ovomucoid glycoprotein could play this role. This compound seems to be deliberately created for this purpose by nature. The ovomucoid happens to consist of two parts. The protein part is responsible for the enzyme binding, and the carbohydrate part reacts with lectins of the mucuous membrane. The scientists have assumed that the ovomucoid should be added to the hydrogel containing insulin.

As a result the researches have produced the insulin pills based on the hydrogel containing the chemically immobilized ovomucoid. The pills were initially tried on animals - rabbits, mice and rats. Since the results were rather promising, it was decided to proceed with clinical trials of the pills - the pills could not do any harm, but their efficiency should be proved.

The pills are currently undergoing the second stage of the clinical trial and the results are very convincing. Judging by the glucose and insulin concentration in the blood, the perroral intake ensures the same effect as the insulin injection directly into the blood.

"Our drug produces the same effect as traditional injections. The pill should also be taken four times a day, about half an hour before the meal. Of course, the drug does not eliminate the problem completely, it does not cure the patient, what it does - it relieves the patient 4 injections a day. No other remedy has succeeded to achieve that so far," says Professor L. I. Valuyev, one of the drug developers. The scientists called the drug `RANSULIN`, the name originates from the Russian abbreviation for the Russian Academy of Sciences and insulin.

Apparently the way from the clinical trials to the pharmacies can take several years. However, this is only a matter of time, since the efficiency of perroral insulin developed by the Russian scientists gives rise to no doubts.

Tatiana Pitchugina | alphagalileo

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>