Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rb protein’s role in retina development is key to understanding devastating eye cancer

03.03.2004


Data from unique gene function studies show Rb is required for proliferation of retinal cells and development of the light-sensitive rods and gives hints for improving treatment of retinoblastoma



The finding that a tumor-suppressor protein called Rb is required for proper development of the mouse retina is a major step toward understanding why some children develop the devastating eye cancer called retinoblastoma. This discovery should eventually help scientists design a better treatment for this disease, according to investigators at St. Jude Children’s Research Hospital. An article about this research is published in the Feb. 29 issue of Nature Genetics.

The St. Jude team showed that Rb limits the proliferation of immature retinal cells so the retina develops to a normal size. The Rb protein also prompts specific cells to develop into light-sensitive cells called rods.


The study results also offer clues to solving a long-standing paradox, according to Michael A. Dyer, Ph.D., an assistant member of the Department of Neurobiology and senior author of the Nature Genetics article.

"Children who lack the gene for Rb are at high risk for developing retinoblastoma, yet mice that also lack the Rb gene do not develop the disease," Dyer said. "The first step to solving that paradox and understanding why mice without the Rb protein don’t get retinoblastoma is figuring out what that protein does during normal mouse development. Our study was that first step. What we’re learning could eventually help us to block the molecular signals that trigger retinoblastoma in children."

Understanding the development of tissues and organs can also help researchers understand why certain types of pediatric tumors occur. The study provides strong evidence that retinoblastoma is a developmental tumor, caused by a genetic abnormality in a tissue or organ present in the developing embryo. Following birth, this abnormality triggers cancer in that tissue or organ during infancy or childhood.

The St. Jude study also broke new ground in the study of retinal development by overcoming a major obstacle blocking earlier researchers from studying the role of Rb in mice lacking this gene. Normally, such studies would be done in Rb "knockout" mice, in which the Rb gene had been artificially eliminated by researchers. But Rb knockout mice die while still embryos, making it impossible to study the effect of this mutation on the developing retina.

However, Dyer’s team was able to demonstrate the critical roles the Rb protein plays in retinal development by using several unique genetic approaches representing important advances in the study of gene function. These techniques included methods for knocking out Rb from retinal cells that can be studied in a laboratory dish, as well as methods for knocking out Rb in single retinal progenitor cells so the effect of this mutation could be studied in both embryos and newborn mice. A progenitor cell is a "parent" cell that divides and multiplies, giving rise to specific types of cells.

One way the researchers solved the problem of embryos dying from lack of Rb was by taking advantage of the fact that the retina is still developing in newborn mice. The team used a virus to insert a gene for E1A--a protein that inactivates Rb--into newborn mice. The retinas in these newborn mice grew abnormally large and failed to develop rods.

"Our work has also included efforts to develop a mouse model that has the same genetic mutations as those found in humans with retinoblastoma, yet permit the mouse to develop and be born," Dyer said. "This will further enhance our understanding of this devastating cancer and allow us to test new treatments that will spare children with this cancer from losing one or both eyes."

Other authors of the article are Jiakun Zhang and Johnathan Gray (St. Jude); Sheldon Rowan and Constance L. Cepko (Howard Hughes Medical Instutite, Harvard Medical School, Boston); and Xumei Zhu and Cheryl M. Craft (University of Southern California, Los Angeles). This work was supported in part by NIH, the National Cancer Institute and ALSAC.


St. Jude Children’s Research Hospital

St. Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas, St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Newly discovered 'multicomponent' virus can infect animals
26.08.2016 | US Army Medical Research Institute of Infectious Diseases

nachricht Symmetry crucial for building key biomaterial collagen in the lab
26.08.2016 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>