Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Mobility – Due to Deafferentation

05.11.2012
Therapy for Stroke Patients Improved by Scientists of Jena University and the University Hospital Jena

Painkilling drugs that make many therapies possible are a blessing for patients. Thanks to modern anesthetics, not only can surgical operations be conducted without causing pain, they are also used for various diagnostic procedures.


In the ‘Constraint-Induced Movement Therapy’ (CIMT) the healthy arm is being restrained in a cuff, while the stroke-affected arm and hand are intensely training fine motor skills.

Photo: Jan-Peter Kasper/FSU

Anesthetics can be very useful in therapies for stroke patients, as psychologists and physicians of the Friedrich Schiller University Jena (Germany) and the University Hospital Jena are now able to prove.

In the ‘Journal of Neuroscience’ (DOI:10.1523/JNEUROSCI.5912-11.2012) the researchers present the results of their study, showing how a local anesthetic can distinctly improve the motor skills of patients after a stroke.

“Many stroke patients suffer from chronic impairment of the hand or of the complete arm,” Professor Dr. Thomas Weiss explains. Together with expert colleagues the psychologist of the department of Biological and Clinical Psychology at Jena University has been working for a number of years on a specialized medical training therapy which clearly enhances the mobility of stroke patients. In the ‘Constraint-Induced Movement Therapy’ (CIMT) the healthy arm is being restrained in a cuff, while the stroke-affected arm and hand are intensely training fine motor skills. Patients are asked to carry out tasks such as stacking small toy blocks or putting tiny pins into a perforated board. Daily activities like washing one’s hand are part of the training.

“Nearly every affected person benefits from this training,” Weiss‘s colleague Prof. Dr. Wolfgang Miltner says. The chair of Biological and Clinical Psychology developed the therapy together with American colleagues and refers to the comprehensive study results about the efficiency of the program. “We are happy to carry out this therapy on many patients - together with our colleagues from the psychology department in the neurological day hospital,” the director of the clinic for Neurology, Prof. Dr. Otto Witte, stresses.

In addition, the impact of the exercise therapy could be clearly enhanced when the sensitivity of the affected arm was lowered by an anesthetic, as the interdisciplinary Jena team was able to demonstrate. In their study, the scientists examined 36 patients. Half of the patients had a local anesthetic cream applied on their forearms. Meanwhile the other patient group only received a placebo. Afterwards, both patient groups went into their exercise therapy for a day.

“Unsurprisingly, the motor performance of all patients was strongly enhanced,” Prof. Weiss commented on the result. “Beyond that, it became obvious that the patients who received the anesthetic benefited even more than the placebo group,“ Weiss says. The researchers could show the reason for this effect using magnetoencephalographic imaging (MEG) of the patients. The temporary interruption of nerve impulses from the forearm leads to a decreasing activity in the brain areas processing these impulses. “At the same time neighboring brain cells are activated more strongly,” the Jena Psychologist explains. Thus the brain reacts to the missing impulses from the forearm with an increased sensitivity in the hand as the MEG images showed. Consequently the motor performance improves as well. “This process starts within minutes,” Thomas Weiss says.

A subsequent study is going to show whether the combination of local anesthetics and therapeutic exercise will improve the mobility of stroke patients in the long term.

Original Publication:
Sens E. et al.: Effects of Temporary Functional Deafferentation on the Brain, Sensation, and Behavior of Stroke Patients, Journal of Neuroscience Vol. 32 (34): 11773-11779, DOI: 10.1523/JNEUROSCI.5912-11.2012

Further information about ‘Constraint-Induced Movement Therapy’ (CIMT) can be found at: http://www.taubsches-training.uni-jena.de.

Contact:
Prof. Dr. Thomas Weiss
Institute of Psychology
Friedrich Schiller University Jena
Am Steiger 3 / Haus 1, D-07743 Jena
Germany
Phone: ++49 3641 / 945143
Email: weiss[at]biopsy.uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.taubsches-training.uni-jena.de

Further reports about: CIMT Mobility brain area brain cell exercise therapy movement stroke stroke patients

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

Researcher creates a controlled rogue wave in realistic oceanic conditions

30.09.2016 | Earth Sciences

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

Spiral arms: not just in galaxies

30.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>