Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning by osmosis

17.11.2008
New brain images show subconscious learning in action and could be used to monitor language rehabilitation

When you listen to someone speaking, it may seem like the words are segmented by pauses, much like the words on this page are separated by spaces. But in reality, you hear a continuous stream of sounds that your brain must organize into meaningful chunks.

One process that mediates this ability is called statistical learning, by which the brain automatically keeps track of how often events, such as sounds, occur together. Now a team of RIKEN scientists has found a signature pattern of brain activity that can predict a person’s degree of achievement in this type of task1.

The team led by Kazuo Okanoya presented volunteers with a 20-minute recording of an artificial language, which they heard passively in three 6.6-minute sessions. While the recording played, participants’ brain activity was measured using an imaging technique called electroencephalograms or EEGs. The researchers then analyzed how the EEG patterns related to events in the recorded language.

This language, instead of being composed of pronounceable syllables, contained only tones, similar to keyboard notes. “We used nonsense tone words to detect basic perceptual processes that are independent of linguistic faculty,” explains team-member Dilshat Abla. This way, the researchers were able to focus on the brain-activity signature of general statistical learning, rather than the specific example of language. The recording heard by the participants consisted of six ‘words’ containing three tones each, but since they were played together without gaps, the word composition would not have been immediately obvious. The participants were told to relax and listen to the streaming sound, and at the end of the experiment, they were tested on which tone triplets came from their recording and which were randomly generated.

The participants succeeded in this discrimination, which revealed to the researchers that they had performed statistical learning without exerting conscious effort. Those who earned average scores in this test showed a distinctive pattern of brain activity in the third recording session. These electric signatures, known as event-related potentials or ERPs, tended to occur 400 milliseconds after the start of a new tone word. Those who scored the lowest did not exhibit these ERPs in any session, suggesting they were not segmenting the start of each word as effectively.

The highest-scoring volunteers did show these ERPs, but only in their first session. Abla explains that the effect is “largest during the discovery phase of the statistical structure,” and represents the process rather than the result of statistical learning.

1. Abla, D., Katahira, K., & Okanoya, K. On-line assessment of statistical learning by event-related potentials. Journal of Cognitive Neuroscience 20, 952–964 (2008).

The corresponding author for this highlight is based at the RIKEN Laboratory for Biolinguistics

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/582/
http://www.researchsea.com

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>