Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Immunologists from the University of Bonn topple dogma

An international team of scientists under the leadership of the University of Bonn disproves a dogma

To date, immunologists have assumed that the macrophages functioning as "scavenger cells" can be classified into two different forms. In an extensive search, the researchers have now discovered that these immune cells turn into far more different manifestations.

Colored visualization differently programmed macrophages.
(c) Photo: Jia Xue / Uni Bonn

These findings also give rise to completely new therapeutic approaches for many widespread diseases. The results are now being published in the renowned journal "Immunity".

In the body, macrophages go on patrol as "scavenger cells" and act to eliminate intruders. According to the commonly held belief in immunology, they are divided into two groups, firstly into "classical macrophages" which spur on inflammatory processes, and secondly into "alternative macrophages" which shut down inflammation. Researchers from the University of Bonn, together with their colleagues at the University of Bonn Hospital and from Worcester (USA) and Edinburgh (Scotland) are now toppling this dogma: In a breakthrough discovery, the scientists disprove this simple classification for the scavenger cells.

Macrophages process complex information like a computer

"Many macrophages do not fit this pattern," says Prof. Dr. med. Joachim L. Schultze from the Life & Medical Sciences (LIMES) Institute of the University of Bonn. "Rather, this simple concept stands in the way of innovative therapeutic approaches." According to the researchers' results, the macrophages react to many different stimuli, for example messengers which they process in the most complex way, like a computer. Therefore they do not just differentiate between macrophages which fuel inflammation or anti-inflammatory macrophages, as previously believed. Rather, the scientists have found at least nine different forms which use their weapons to optimally fight intruders in different ways.

The scientists from the LIMES Institute of the University of Bonn used blood samples from different people in order to obtain as many different macrophages as possible from the precursor cells in the samples using various growth factors. While these scavenger cells mature, certain genes are activated in their DNA. The researchers identify which genes these are by means of so-called RNA which functions in the cell as a genetic messenger. "With complex bioinformatic analyses, we obtained a type of fingerprint for each macrophage which showed us which genes in the cell were directly active," reports Prof. Schultze. Using this genetic fingerprint, the scientists were able to deduce which combination of stimuli led to the macrophage developing in a particular direction.

The dawn of completely new therapeutic options

For their bioinformatic data sets, the researchers then performed the acid test: Macrophages were obtained from the lungs of smokers and compared with the same scavenger cells in healthy lungs. It could be seen that the macrophages from smokers' lungs could not be allocated to either the kind that fuels inflammation or to the anti-inflammatory type. The scientist is convinced that "We have to step away from the simple classification of macrophages and investigate them more closely in respective connections with diseases." "When we depart from the conventional pattern, fully new concepts open up."

Much about the activation of macrophages and thus about classical immune reactions can be discerned from the genetic fingerprints. "This is the dawn of new therapy options," says Prof. Schultze. Because macrophages play a role in many widespread diseases including, for example, arteriosclerosis, obesity, diabetes, asthma, Alzheimer's disease and cancer.

Publication: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation, "Immunity"

Contact information:

Prof. Dr. med. Joachim L. Schultze
Life & Medical Sciences (LIMES) Institute
Tel. 0228/7362787
Weitere Informationen:

Johannes Seiler | idw
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>