Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More Effective Immunotherapy for Melanoma Hinges on Blocking Suppressive Factors

11.12.2012
Researchers at the Moffitt Cancer Center have found that delayed tumor growth and enhanced survival of mice bearing melanoma were possible by blocking the reconstitution of myeloid-derived suppressor cells and Tregs (suppressors of anti-tumor activity) after total body irradiation had eliminated them.
Blocking myeloid-derived suppressor cells and regulatory T-cell reconstitution improved adoptive T-cell therapy, an immunotherapy designed to suppress tumor activity.

The study appears in the December issue of The Journal of Immunology.

“Melanoma is a leading cause of cancer mortality,” said Shari Pilon-Thomas, Ph.D., assistant member of the Immunology Program at Moffitt. “With few nonsurgical options for treating melanoma, immunotherapy, which focuses on the induction of immunity against cancer cells, is a promising approach. However, a major hurdle in developing effective immunotherapies is tumor-induced suppression that can limit the effectiveness of tumor-specific T-cells used in immunotherapy.”

Chemotherapy or radiation can induce lymphopenia, the condition of having an abnormally low level of white blood cells. This condition is optimal for adoptive T-cell therapeutic strategies. However, after the induction of lymphopenia, suppressor populations that favor tumor progression begin reconstitution, including regulatory T cells (Tregs) and myeloid derived suppressor cells (MDSC). According to the researchers, tumor-induced suppression can stem from quickly reconstituted Tregs and MDSC.
This knowledge led to their research question, whether blocking the reconstitution of suppressor populations - such as Tregs and myeloid derived suppressor cells - could lead to better immunotherapy in mice bearing melanoma. Mice were treated with docetaxel, a chemotherapeutic drug that targets MDSC, followed by adoptive T cell therapy. In brief, the study demonstrated that when myeloid-derived suppressor cells and Treg reconstitution are blocked, immunotherapy with adoptive T cell transfer is more effective.

“It was important to understand the role of these suppressor populations after the induction of lymphopenia so that we can design more effective immunotherapeutic treatments for melanoma aimed at achieving complete tumor regression,” concluded Dr. Pilon-Thomas.

About Moffitt Cancer Center
Located in Tampa, Moffitt is one of only 41 National Cancer Institute-designated Comprehensive Cancer Centers, a distinction that recognizes Moffitt’s excellence in research, its contributions to clinical trials, prevention and cancer control. Since 1999, Moffitt has been listed in U.S. News & World Report as one of “America’s Best Hospitals” for cancer. With more than 4,200 employees, Moffitt has an economic impact on the state of nearly $2 billion. For more information, visit MOFFITT.org, and follow the Moffitt momentum on Facebook, twitter and YouTube.

Media release by Florida Science Communications

Kim Polacek | EurekAlert!
Further information:
http://www.moffitt.org

More articles from Health and Medicine:

nachricht Newly discovered 'multicomponent' virus can infect animals
26.08.2016 | US Army Medical Research Institute of Infectious Diseases

nachricht Symmetry crucial for building key biomaterial collagen in the lab
26.08.2016 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

Bringing artificial enzymes closer to nature

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>