Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery brings scientists one step closer to understanding tendon injury

Research led by Queen Mary University of London has discovered a specific mechanism that is crucial to effective tendon function, which could reveal why older people are more prone to tendon injury.

Tendons, such as the Achilles, connect muscle to bone, and are loaded repeatedly during movement. When exposed to particularly high loads, this can cause injury in some individuals. The risk of injury increases with age, but scientists have never fully understood why.

Tendon injury is common in horses as well as humans, and the team, working together with scientists from the University of Liverpool, University College London and the University of East Anglia, used tendons from horses already deceased to understand injury risk, and demonstrate the mechanism in action.

The research team found that fascicles – the subunit that makes up tendons – are coiled like a spring, or helix. They have shown that the helix structure enables tendons to stretch and recover, with results suggesting that damage to the helix stops the tendon working properly.

“The helical shape of the fascicles seems to be critical in maintaining tendon elasticity,” explains co-author Dr Hazel Screen, a Reader in medical engineering at Queen Mary’s School of Engineering and Materials Science.

“Repetitive loading causes the fascicles to unwind and be less effective, triggering them to become damaged or leading to injury.”

The team also showed how ageing affects the helix.

Co-author Dr Chavaunne Thorpe said: “The findings suggest that the helix structure is altered with age resulting in a decreased ability to withstand further loading and so making aged tendons more prone to injury.”

This work was funded by the Horserace Betting Levy Board and is published in the Royal Society journal Interface.

‘Fascicles from energy-storing tendons show an age-specific response to cyclic fatigue loading’ is published in the Royal Society Journal Interface on Wednesday 8 January 2014.

For more information, a copy of the paper or to arrange interviews with the authors, please contact:

Neha Okhandiar
Public Relations Manager
Queen Mary University of London
020 7882 7927
Queen Mary University of London
Queen Mary University of London is one of the UK's leading research-focused higher education institutions with some 17,840 undergraduate and postgraduate students.
A member of the Russell Group, it is amongst the largest of the colleges of the University of London. Queen Mary’s 4,000staff deliver world class degree programmes and research across 21 academic departments and institutes, within three Faculties: Science and Engineering; Humanities and Social Sciences; and the School of Medicine and Dentistry.
Queen Mary is ranked 11th in the UK according to the Guardian analysis of the 2008 Research Assessment Exercise, and has been described as ‘the biggest star among the research-intensive institutions’ by the Times Higher Education.
The College has a strong international reputation, with around 20 per cent of students coming from over 100 countries. Queen Mary has an annual turnover of £300m, research income worth £90m, and generates employment and output worth £600m to the UK economy each year.

The College is unique amongst London's universities in being able to offer a completely integrated residential campus, with a 2,000-bed award-winning Student Village on its Mile End campus.

Neha Okhandiar | Queen Mary University of London
Further information:

Further reports about: Achilles Science TV tendon elasticity tendon function tendon injury

More articles from Health and Medicine:

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

nachricht Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection
24.10.2016 | Universität Basel

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>