Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery may aid vaccine design for common form of malaria

10.01.2014
A form of malaria common in India, Southeast Asia and South America attacks human red blood cells by clamping down on the cells with a pair of proteins, new research at Washington University School of Medicine in St. Louis has revealed.

The study provides details that will help scientists design better vaccines and drug treatments for the strain, Plasmodium vivax.

"More people live at risk of infection by this strain of malaria than any other," said senior author Niraj Tolia, PhD, assistant professor of molecular microbiology and of biochemistry and molecular biophysics. "We now are using what we have learned to create vaccines tailored to stop the infectious process by preventing the parasite from attaching to red blood cells."

The finding appears Jan. 9 in PLOS Pathogens.

The World Health Organization estimates there were more than 200 million malaria cases in 2012. The deadliest form of malaria, Plasmodium falciparum, is most prevalent in Africa. But P. vivax can hide in the liver, re-emerging years later to trigger new infections, and is harder to prevent, diagnose and treat.

Earlier studies had suggested that one P. vivax protein binds to one protein on the surface of red blood cells. Tolia's new study reveals that the binding is a two-step process that involves two copies of a parasite protein coming together like tongs around two copies of a host protein.

"It's a very intricate and chemically strong interaction that was not easily understood before," Tolia said. "We have had hints that other forms of malaria, including the African strain, may be binding in a similar fashion to host cells, but this is one of the first definitive proofs of this kind of attack."

Tolia suspects blocking any of the proteins with drugs or vaccines will stop the infectious process.

"For example, some people have a mutation that eliminates the protein on red blood cell surfaces that P. vivax binds to, and they tend to be resistant to the parasite," he said. "This is why this strain isn't prevalent in Africa — evolutionary pressure has caused most of the populations there to stop making this protein."

Tolia also found evidence that other people with immunity to P. vivax have developed naturally occurring antibodies that attach to a key part of the parasite's binding protein, preventing infection.

"The parasite protein is very large, and human antibodies bind to it at many different points along its length," Tolia explained. "We have observed that the ones that are most effective so far are the antibodies that bind to the protein at the region highlighted by our new research."

This research was made possible by funding from the National Institute for Allergy and Infectious Diseases of the National Institutes of Health (NIH) (R01 080792), the Edward Mallinckrodt, Jr. Foundation, an American Heart Association postdoctoral fellowship, and a National Science Foundation Graduate Research Fellowship (DGE-1143954).

Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Heinzler-Wildman KA, Tolia NH. Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC. PLOS Pathogens, online Jan. 9, 2014.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Newly discovered 'multicomponent' virus can infect animals
26.08.2016 | US Army Medical Research Institute of Infectious Diseases

nachricht Symmetry crucial for building key biomaterial collagen in the lab
26.08.2016 | University of Wisconsin-Madison

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>