Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cocktail boosts immune cells in fighting cancer

07.12.2012
Fighting cancer using the body's own defense system is a promising treatment approach. Immune therapies have even become clinical routine in treating a few cancers such as malignant melanoma and prostate cancer.

Natural killer cells (or NK cells) are considered to be particularly suitable weapons against cancer. They are part of the innate immune system and respond to a wide range of cancer cells of diverse origin. Moreover, NK cells also kill tumor cells that have lost a specific target and go unnoticed by other immune cells.

"The big problem in using NK cells for therapy is their rapid loss of activity, hence their aggressiveness," says Dr. Adelheid Cerwenka. Together with her team at the German Cancer Research Center (DKFZ), Cerwenka is trying to ¬develop cancer therapies based on NK cells. "Although there are good treatment results for certain types of blood cancer, ¬NK cells have been clinically effective in fighting solid tumors only in a few cases," the immunologist explains.

Cerwenka's team has now been the first to enhance the NK cells' deadly potential in mice using a cocktail of three different immune mediators (interleukins 12, 15, and 18). NK cells that were activated in the culture dish and then injected into cancerous mice significantly slowed down tumor growth. The animals survived significantly longer and in one quarter of animals the tumors even regressed completely. By contrast, NK cells without prior treatment were ineffective.

The NK cells pretreated with the cocktail initially multiplied strongly in the mice. The researchers found it particularly remarkable that the NK cells appear to be re-stimulated by other immune cells in the bodies of the affected mice and were thus kept in an active state. Even after three months, the DKFZ immunologists still found active, functional NK cells in mice, even after the tumors had already been rejected. "We previously thought immunological memory exists only in cells of the adaptive immune system," says Cerwenka.

However, NK cells were only able to let tumors shrink if the mice had undergone prior radiation treatment. The scientists found a lot more NK cells at their site of action in tumor tissue in irradiated mice than in control animals. Cerwenka and colleagues do not yet know the precise molecular reason for this observation. "The good thing is that we might be able to¬ achieve this effect in a potential clinical application by combining the cocktail-treated NK cells with radiation therapy."

Cocktail-treated human NK cells also display all molecular signs of sustained activation in cell culture. Adelheid Cerwenka and her team have already started testing the effectiveness of killer cells in fighting human cancer cells. "We hope to advance the development of NK cell therapies against cancer with our novel approach," says Cerwenka.

Jing Ni, Matthias Miller, Ana Stojanovic, Natalio Garbi and Adelheid Cerwenka: Sustained effector function of IL-12/15/18 preactivated NK cells against established tumors. Journal of Experimental Medicine 2012, DOI: 10.1084/jem.20120944

*The body's defense system is made up of the innate and the adaptive immune systems. The innate system is responsible for immediate defense of the body. Cells of the innate system do not have specific receptors but respond to a broad spectrum of pathogens (using phagocytes, granulocytes) or transformed body cells (using NK cells). By contrast, T and B lymphocytes, which are part of the adaptive immune system, are equipped with highly specific receptor molecules directed against protein components of specific pathogens. If these long-lived cells, which form a sort of memory of the immune system, encounter this specific invader again, they first have to multiply before they can mount an effective defense. Therefore, several days pass before the adaptive immune defense is ready to fight the attack.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Satellites, airport visibility readings shed light on troops' exposure to air pollution
09.12.2016 | Veterans Affairs Research Communications

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>