Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cocktail boosts immune cells in fighting cancer

07.12.2012
Fighting cancer using the body's own defense system is a promising treatment approach. Immune therapies have even become clinical routine in treating a few cancers such as malignant melanoma and prostate cancer.

Natural killer cells (or NK cells) are considered to be particularly suitable weapons against cancer. They are part of the innate immune system and respond to a wide range of cancer cells of diverse origin. Moreover, NK cells also kill tumor cells that have lost a specific target and go unnoticed by other immune cells.

"The big problem in using NK cells for therapy is their rapid loss of activity, hence their aggressiveness," says Dr. Adelheid Cerwenka. Together with her team at the German Cancer Research Center (DKFZ), Cerwenka is trying to ¬develop cancer therapies based on NK cells. "Although there are good treatment results for certain types of blood cancer, ¬NK cells have been clinically effective in fighting solid tumors only in a few cases," the immunologist explains.

Cerwenka's team has now been the first to enhance the NK cells' deadly potential in mice using a cocktail of three different immune mediators (interleukins 12, 15, and 18). NK cells that were activated in the culture dish and then injected into cancerous mice significantly slowed down tumor growth. The animals survived significantly longer and in one quarter of animals the tumors even regressed completely. By contrast, NK cells without prior treatment were ineffective.

The NK cells pretreated with the cocktail initially multiplied strongly in the mice. The researchers found it particularly remarkable that the NK cells appear to be re-stimulated by other immune cells in the bodies of the affected mice and were thus kept in an active state. Even after three months, the DKFZ immunologists still found active, functional NK cells in mice, even after the tumors had already been rejected. "We previously thought immunological memory exists only in cells of the adaptive immune system," says Cerwenka.

However, NK cells were only able to let tumors shrink if the mice had undergone prior radiation treatment. The scientists found a lot more NK cells at their site of action in tumor tissue in irradiated mice than in control animals. Cerwenka and colleagues do not yet know the precise molecular reason for this observation. "The good thing is that we might be able to¬ achieve this effect in a potential clinical application by combining the cocktail-treated NK cells with radiation therapy."

Cocktail-treated human NK cells also display all molecular signs of sustained activation in cell culture. Adelheid Cerwenka and her team have already started testing the effectiveness of killer cells in fighting human cancer cells. "We hope to advance the development of NK cell therapies against cancer with our novel approach," says Cerwenka.

Jing Ni, Matthias Miller, Ana Stojanovic, Natalio Garbi and Adelheid Cerwenka: Sustained effector function of IL-12/15/18 preactivated NK cells against established tumors. Journal of Experimental Medicine 2012, DOI: 10.1084/jem.20120944

*The body's defense system is made up of the innate and the adaptive immune systems. The innate system is responsible for immediate defense of the body. Cells of the innate system do not have specific receptors but respond to a broad spectrum of pathogens (using phagocytes, granulocytes) or transformed body cells (using NK cells). By contrast, T and B lymphocytes, which are part of the adaptive immune system, are equipped with highly specific receptor molecules directed against protein components of specific pathogens. If these long-lived cells, which form a sort of memory of the immune system, encounter this specific invader again, they first have to multiply before they can mount an effective defense. Therefore, several days pass before the adaptive immune defense is ready to fight the attack.

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) with its more than 2,500 employees is the largest biomedical research institute in Germany. At DKFZ, more than 1,000 scientists investigate how cancer develops, identify cancer risk factors and endeavor to find new strategies to prevent people from getting cancer. They develop novel approaches to make tumor diagnosis more precise and treatment of cancer patients more successful. Jointly with Heidelberg University Hospital, DKFZ has established the National Center for Tumor Diseases (NCT) Heidelberg where promising approaches from cancer research are translated into the clinic. The staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The center is a member of the Helmholtz Association of National Research Centers. Ninety percent of its funding comes from the German Federal Ministry of Education and Research and the remaining ten percent from the State of Baden-Württemberg.

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>