Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cholesterol-lowering medication accelerates depletion of plaque in arteries

14.12.2011
New study reveals molecular mechanism promoting the breakdown of plaque by statins

In a new study, NYU Langone Medical Center researchers have discovered how cholesterol-lowering drugs called statins promote the breakdown of plaque in the arteries. The study was published online by the journal PLoS One on December 6, 2011.

The findings support a large clinical study that recently showed patients taking high-doses of the cholesterol-lowering medications not only reduced their cholesterol levels but also reduced the amount of plaque in their arteries. However, until now researchers did not fully understand how statins could reduce atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque in arteries, a major cause of mortality in Western countries. High blood cholesterol is a major culprit in atherosclerosis. As a result of narrowing arteries, blood clots can form or plaque can break off causing blockages in vessels. This can lead to a potentially fatal heart attack or stroke.

"Our new research shows statins actually promote the regression of atherosclerosis by altering the expression of a specific cell surface receptor within plaque cells," said co-author of the study, Edward Fisher, MD, PhD, Leon H. Charney Professor of Cardiovascular Medicine and director of the Marc and Ruti Bell Vascular Biology Program at NYU Langone Medical Center. "This molecular phenomenon helps dissolve plaque by expelling coronary artery disease-causing cells from the plaque lining the arteries."

The NYU Langone study reveals how statins promote the transformation of arterial plaques by activating a protein that sits on the surface of macrophages, immune cells that are prevalent in plaque. The immune system sends macrophages to clean up cholesterol deposits in arteries, but once they fill up with the bad form of cholesterol they get stuck in the arteries, triggering the body's inflammatory response. The bloated macrophages then become major components of plaque lining artery walls.

In the study, researchers show in mouse models that statins activate the cell surface protein receptor C-C chemokine receptor type 7 (CCR7), which in turn activates a cell-signaling pathway forcing macrophages out of plaque. In addition, the researchers show that macrophages only leave plaque when CCR7 is expressed. Therefore, regression of plaque is dependent on CCR7, the researchers concluded. The statins appeared to directly regulate and enhance CCR7 gene expression and induce macrophage cells to leave the plaque. CCR7 is a widely studied protein associated with the migration of immune cells and its expression is a marker of the presence of macrophages.

Statins are potent inhibitors of HMG-CoA reductase, the enzyme that plays a central role in the production of cholesterol. Statins have been shown to reduce the risk of cardiovascular disease and cardiac events like heart attack. Cholesterol is needed for all proper cellular function. High-density lipoprotein cholesterol (HDL-C), good cholesterol, helps reduce the risk of atherosclerosis by taking cholesterol away from cells. Low density lipoprotein (LDL-C), bad cholesterol, carries cholesterol to cells. However, an LDL overload in the body increases a person's risk of cardiovascular disease including atherosclerosis.

"Our experimental findings indicate that statins, in addition to lowering LDL cholesterol, have clinical benefits of accelerating plaque regression by a newly discovered mechanism," said co-author Michael Garabedian, PhD, Professor, Department of Microbiology and Urology at NYU Langone Medical Center. "It's possible that these drugs could possibly be more beneficial to a wider population of patients potentially reducing the overall lifetime burden of plaque and the prevention of atherosclerosis."

The study was a collaboration by NYU Langone Medical Center's Department of Medicine, Division of Cardiology, the Department of Microbiology, Schneider Children's Medical Center of Israel and the Centre for Clinical Pharmacology, Division of Medicine at the University College of London in the United Kingdom. This research study was supported by funding from the National Institutes of Health, Astra Zeneca and Pfizer.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org.

Lauren Woods | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>