Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cholesterol-lowering medication accelerates depletion of plaque in arteries

New study reveals molecular mechanism promoting the breakdown of plaque by statins

In a new study, NYU Langone Medical Center researchers have discovered how cholesterol-lowering drugs called statins promote the breakdown of plaque in the arteries. The study was published online by the journal PLoS One on December 6, 2011.

The findings support a large clinical study that recently showed patients taking high-doses of the cholesterol-lowering medications not only reduced their cholesterol levels but also reduced the amount of plaque in their arteries. However, until now researchers did not fully understand how statins could reduce atherosclerosis, the accumulation of fat and cholesterol that hardens into plaque in arteries, a major cause of mortality in Western countries. High blood cholesterol is a major culprit in atherosclerosis. As a result of narrowing arteries, blood clots can form or plaque can break off causing blockages in vessels. This can lead to a potentially fatal heart attack or stroke.

"Our new research shows statins actually promote the regression of atherosclerosis by altering the expression of a specific cell surface receptor within plaque cells," said co-author of the study, Edward Fisher, MD, PhD, Leon H. Charney Professor of Cardiovascular Medicine and director of the Marc and Ruti Bell Vascular Biology Program at NYU Langone Medical Center. "This molecular phenomenon helps dissolve plaque by expelling coronary artery disease-causing cells from the plaque lining the arteries."

The NYU Langone study reveals how statins promote the transformation of arterial plaques by activating a protein that sits on the surface of macrophages, immune cells that are prevalent in plaque. The immune system sends macrophages to clean up cholesterol deposits in arteries, but once they fill up with the bad form of cholesterol they get stuck in the arteries, triggering the body's inflammatory response. The bloated macrophages then become major components of plaque lining artery walls.

In the study, researchers show in mouse models that statins activate the cell surface protein receptor C-C chemokine receptor type 7 (CCR7), which in turn activates a cell-signaling pathway forcing macrophages out of plaque. In addition, the researchers show that macrophages only leave plaque when CCR7 is expressed. Therefore, regression of plaque is dependent on CCR7, the researchers concluded. The statins appeared to directly regulate and enhance CCR7 gene expression and induce macrophage cells to leave the plaque. CCR7 is a widely studied protein associated with the migration of immune cells and its expression is a marker of the presence of macrophages.

Statins are potent inhibitors of HMG-CoA reductase, the enzyme that plays a central role in the production of cholesterol. Statins have been shown to reduce the risk of cardiovascular disease and cardiac events like heart attack. Cholesterol is needed for all proper cellular function. High-density lipoprotein cholesterol (HDL-C), good cholesterol, helps reduce the risk of atherosclerosis by taking cholesterol away from cells. Low density lipoprotein (LDL-C), bad cholesterol, carries cholesterol to cells. However, an LDL overload in the body increases a person's risk of cardiovascular disease including atherosclerosis.

"Our experimental findings indicate that statins, in addition to lowering LDL cholesterol, have clinical benefits of accelerating plaque regression by a newly discovered mechanism," said co-author Michael Garabedian, PhD, Professor, Department of Microbiology and Urology at NYU Langone Medical Center. "It's possible that these drugs could possibly be more beneficial to a wider population of patients potentially reducing the overall lifetime burden of plaque and the prevention of atherosclerosis."

The study was a collaboration by NYU Langone Medical Center's Department of Medicine, Division of Cardiology, the Department of Microbiology, Schneider Children's Medical Center of Israel and the Centre for Clinical Pharmacology, Division of Medicine at the University College of London in the United Kingdom. This research study was supported by funding from the National Institutes of Health, Astra Zeneca and Pfizer.

About NYU Langone Medical Center

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to

Lauren Woods | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>