Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bangladeshi and Canadian researchers to stem transmission and deaths from dengue fever

24.01.2013
Funded by the International Development Research Centre, their goal is to understand how dengue is transmitted in the city, focusing on — health, the environment and climate, human behaviour, and urban planning, among others. This knowledge is critical for preventing the spread of the mosquito vector and controlling the virus.

No specific treatment exists for a serious mosquito-borne disease that is sweeping into new parts of the globe. Nor are there any vaccines to prevent infection in the first place.



Combating the disease — dengue — largely depends on controlling the mosquitoes that spread it. To that end, a Canadian-funded effort to stem transmission and deaths from dengue in one hot spot for the disease in Bangladesh could help communities worldwide develop strategies to fend it off.

Dengue is a growing global public health concern. Before 1970, severe dengue epidemics had been recorded in only nine countries. Now the disease is endemic in more than 100 countries in Asia, Africa, and the Americas. The World Health Organization reports that half of the world’s population is at risk. Hundreds of thousands of severe cases and more than 20,000 deaths occur annually.

Dengue is caused by any one of four viruses transmitted by Aedes mosquitoes. These mosquitoes were originally found in tropical and sub-tropical regions, but now exist on all continents except Antarctica. They have caused outbreaks of dengue in the southern United States, and been seen as far north as New York and Chicago.

While dengue exists in both rural and urban areas, city dwellers are most at risk. The mosquito disease-carriers reproduce in standing water, which is common wherever people store water at home for drinking and bathing purposes. The rapid growth of cities in tropical countries has led to overcrowding, allowing more dengue-carrying mosquitoes to live closer to more people.

Because of poor knowledge about dengue transmission and lax regulations, construction sites in the booming cities offer ideal breeding grounds. Uncollected garbage also poses a danger, as discarded plastic packaging, tires, and other containers allow water to accumulate and remain stagnant for days. And if there’s no water for hatching, mosquito eggs can survive in dry conditions for more than year.

Humans help spread the virus in other ways — for example, by shipping tires and other containers to faraway places. Increased air travel means the virus can readily travel with its human host to new and distant locations.

Fighting dengue is an uphill battle, made difficult in many areas by weak surveillance systems, inadequate public health services, and a lack of resources to control the mosquito vectors. A more fundamental problem is that little is known about disease transmission dynamics — how changes in land use, in population, climate, pathogen evolution, and international travel and trade can trigger or exacerbate the spread of the disease.

All these factors are at play in the major cities of Bangladesh. The capital, Dhaka, with a population of 17 million, has experienced repeated devastating outbreaks of the severe form of dengue in recent years. But poor public health infrastructure and a lack of resources mean this poor, rapidly growing city lacks even basic knowledge about how much dengue there is, what strains are circulating, and where and when the infected mosquitoes are to be found.

That could soon change thanks to research being carried out by Bangladeshi and Canadian researchers, funded by Canada’s International Development Research Centre.

The team brings together Bangladesh’s Ministry of Health and Family Welfare with strong scientific organizations (North South University, International Centre for Diarrhoeal Disease Research, Bangladesh and Jahangirnagar University in Bangladesh with the University of Manitoba and the Public Health Agency of Canada). Also participating are a civil society organization with presence and credibility in city slums, and city ward governments.
Their goal, simply put, is to better understand how dengue is transmitted in the city, focusing on many factors — health, the environment and climate, human behaviour, and urban planning, among others. This knowledge is critical for preventing the spread of the mosquito vector and controlling the virus.

That knowledge can then lead to more strategic investments in public health and healthier working and living environments. Good working relationships between community groups and government agencies will help ensure that solutions work well in the affected areas of the city. Dhaka’s experience and new knowledge gained could also benefit other cities and regions facing similar problems.

By building the capacity of local researchers and government institutions to understand and respond to dengue, and by strengthening international collaboration, the research will not only reduce suffering in the short term, but limit opportunities for new diseases to emerge.

Canadians well understand the potential threat these diseases pose, having dealt with invasions by Severe Acute Respiratory Syndrome and West Nile Virus in the recent past. The more Canada can do to assist developing countries control diseases such as dengue, the better for them and for us.

About the authors

Dominique Charron and Andrés Sanchez work on ecohealth — the field of ecosystem approaches to human health at the Ottawa-based Canada’s International Development Research Centre.

Dominique Charron / Andrés Sanchez | Research asia research news
Further information:
http://www.idrc.org.sg
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Custom-tailored strategy against glioblastomas
26.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New leukemia treatment offers hope
23.09.2016 | King Abdullah University of Science and Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>