Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The hunt for mirror neurons – not every technique picks them up

19.02.2013
Researchers in Tübingen have been studying how mirror neurons, which are assumed to be key to the understanding of behaviour, respond when the same action is repeatedly observed.
They found answers in the cerebral cortex of monkeys. The study, published in the journal Nature Communications, has a surprising result: the mirror neuron system does not adapt. This contradicts the original assumption of researchers, that mirror neurons – the same as other nerve cells – react to the frequent repetition of a particular stimulus through a reduced level of activity (adaptation.)

The results of the study highlight the importance of finding a new interpretation of neuroimaging studies that have so far shown that mirror neurons adapt. Astonishingly, these studies had shown adaptation. Researchers at the Hertie Institute for Clinical Brain Research (HIH) and the Werner Reichardt Centre for Integrative Neuroscience at the University of Tübingen have found an explanation for these apparently contradictory results.

Mirror Neurons Respond to Goal-Directed Behaviours
As with other nerve cells, it is possible to stimulate mirror neurons, which can transmit this stimulation on to other nerve cells. This happens with the help of electrical impulses, which ‘fire’ up to several hundred times a second. This ‘firing’ can be measured by an electrode. Researchers had previously discovered that mirror neurons control hand movements that are directed towards a particular goal, for instance grasping a piece of apple. Yet what is special about mirror neurons is that they are similarly active when these kinds of goal-directed actions are merely observed. Hence they might play a decisive role in comprehending the behaviour of other people.

Unexpected Pattern of Activity Baffles researchers
‘Surprisingly, it was shown that two thirds of mirror neurons did not adapt their firing patterns, as had previously been assumed’, says Pomper, a scientist at the Hertie Institute for Clinical Brain Research (HIH). Studies carried out with functional Magnetic Resonance Imaging (fMRI) had shown the opposite: the mirror neurons adapted, that is they reacted more and more weakly to the repetition of the same stimulus.
Not Every Approach is Able to Measure
The activity measured by fMRI is only able to record the ‘firing’ of nerve cells indirectly. It merely identifies changes in the blood flow through oxygen levels in the red blood cells. Experts describe this as the BOLD effect. They are evoked by the energy needs of active nerve cells. Input signals, certain processing stages in the cell protruberances (dendrites) and cell bodies, along with the activity of glial cells, another element of the nervous system, also contribute to this. ‘‘As a result, conclusions about the behavior of individual cells cannot be drawn directly from changing in BOLD signal’ says Dr. Vittorio Caggiano, formerly at Hertie Institute for Clinical Brain Research and Center for Integrative Neuroscience, University Clinic Tübingen(1).The assumption up to now has always been that an adaptation of nerve cells was the basis of the reduction of the BOLD effect seen in experiments when the same action is subsequently performed and then observed. According to the authors of the study, on the basis of the results of the current study the former interpretation of the BOLD adaptation does not stand up.

So how to explain the BOLD adaptation? One interpretation the researchers can offer is the additional raised local field potentials (LFP) in the brain: these do in fact manifest the anticipated adaptation and so they could explain the fMRI data. In every nerve cell the signal transfer goes through input signals and occasionally output signals, so-called action potentials. If the input signal to be converted into an output signal, that would lead to the firing of neurotransmitters. These in turn stimulate the next nerve cell along as a transfer signal. The researchers suggest that LFP express the input signals that come from other areas of the brain and the expression of them in a particular region.

New Interpretation of the Current Study
It has always been that mirror neurons fire in the same way regardless of whether a subject personally performs an action or watches it. Therefore they seemed to be verifiable when one compares the fMRI signals from the execution and the observation of actions, whether of the same kind or different. ‘A one-to-one correspondence of fMRI data and the activity of mirror neurons is thus not possible. Hence from our point of view the need to find a new account of the neuro-imaging studies based on adaptation’ is ho it is summarized by Peter Their, a member of the HIH board and Chairman of the CIN.

(1) Present address: McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT)

Publication
Mirror neurons in monkey area F5 do not adapt to the observation of repeated actions; Vittorio Caggiano, Joern K. Pomper, Falk Fleischer, Leonardo Fogassi, Martin Giese & Peter Thier; Nature Communications 4, Article number: 1433 doi:10.1038/ncomms2419; Received 31 May 2012, Accepted 20 December 2012, Published 05 February 2013; http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2419.html

Press contact
Silke Jakobi

Head of Communication
HIH Hertie Institut for Clinical Brain Research
Center of Neurology Tübingen
Otfried-Müller-Str. 27
72076 Tübingen
Phone ++ 49 (0)7071/29-88800
Fax ++ 49 (0)7071/29-4796
silke.jakobi(at)medizin.uni-tuebingen.de

Silke Jakobi | idw
Further information:
http://www.uni-tuebingen.de
http://www.nature.com/ncomms/journal/v4/n2/full/ncomms2419.html

More articles from Medical Engineering:

nachricht Termination of lethal arrhythmia with light
13.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Sensor systems identify senior citizens at risk of falling within 3 weeks
29.08.2016 | University of Missouri-Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

How to merge two black holes in a simple way

26.09.2016 | Physics and Astronomy

Australian technology installed on world’s largest single-dish radio telescope

26.09.2016 | Physics and Astronomy

New mechanisms uncovered explaining frost tolerance in plants

26.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>