Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting disease deep inside the brain

18.02.2013
Some 90,000 patients per year are treated for Parkinson's disease, a number that is expected to rise by 25 percent annually.
Deep Brain Stimulation (DBS), which consists of electrically stimulating the central or peripheral nervous system, is currently standard practice for treating Parkinson's, but it can involve long, expensive surgeries with dramatic side effects. Miniature, ultra-flexible electrodes developed in Switzerland, however, could be the answer to more successful treatment for this and a host of other health issues.

Today, Professor Philippe Renaud of the École Polytechnique Fédérale de Lausanne (EPFL) in Switzerland reports on soft arrays of miniature electrodes developed in his Microsystems Laboratory that open new possibilities for more accurate and local DBS. At the 2013 Annual Meeting of the American Association for the Advancement of Science (AAAS) in Boston, in a symposium called "Engineering the Nervous System: Solutions to Restore Sight, Hearing, and Mobility," he announces the start of clinical trials and early, yet promising results in patients, and describes new developments in ultra-flexible electronics that can conform to the contours of the brainstem—in the brain itself—for treating other disorders.

At AAAS, Renaud outlines the technology behind these novel electronic interfaces with the nervous system, the associated challenges, and their immense potential to enhance DBS and treat disease, even how ultra flexible electronics could lead to the auditory implants of the future and the restoration of hearing. "Although Deep Brain Stimulation has been used for the past two decades, we see little progress in its clinical outcomes," Renaud says. "Microelectrodes have the potential to open new therapeutic routes, with more efficiency and fewer side effects through a much better and finer control of electrical activation zones." The preliminary clinical trials related to this research are being done in conjunction with EPFL spin-off company Aleva Neurotherapeutics, the first company in the world to introduce microelectrodes in Deep Brain Stimulation leading to more precise directional stimulation.
Researcher Contact:
Professor Philippe Renaud
philippe.renaud@epfl.ch
Microsystems Laboratory 4 : http://lmis4.epfl.ch/
Press Kit: http://bit.ly/VJtgH5
About EPFL:
With over 350 laboratories and research groups on campus, EPFL is one of Europe's most innovative and productive scientific institutions. Ranked top 3 in Europe and top 20 worldwide in many scientific rankings, EPFL has attracted the best researchers in their fields.

The institute's unique structure fosters trans-disciplinary research and promotes partnerships with other institutions. It continuously combines fundamental research and engineering. http://information.epfl.ch/glance

Hillary Sanctuary | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Medical Engineering:

nachricht Termination of lethal arrhythmia with light
13.09.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Sensor systems identify senior citizens at risk of falling within 3 weeks
29.08.2016 | University of Missouri-Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>