Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cardiovascular disease: The mechanics of prosthetic heart valves

Computer simulations of blood flow through mechanical heart valves could pave the way for more individualized prosthetics
Every year, over 300,000 heart valve replacement operations are performed worldwide. Diseased valves are often replaced with mechanical heart valves (MHVs), which cannot yet be designed to suit each patient’s specific needs. Complications such as blood clots can occur, which can require patients to take blood-thinning medication.

To investigate why such complications occur, Vinh-Tan Nguyen at A*STAR’s Institute of High Performance Computing, Singapore, together with scientists at the National University of Singapore and institutions across the USA, have developed a new computer model to simulate the dynamics of blood flow through MHVs1.

“The current practice for heart valve replacement in patients is a one-size-fits-all approach where a patient is implanted with the best-fit valve available on the market,” explains Nguyen. “The valves are well designed for general physiological conditions, but may not be suitable for each individual’s particular heart condition.”

The researchers focused on the blood flow dynamics in a prosthetic valve known as a bileaflet MHV. This type of MHV contains two mobile leaflets, or gates, which are held in place by hinges. The leaflets open and close in response to blood flow pressures through the valve. Little is known about the effect that the hinged leaflets have on blood dynamics, although such designs are suspected of causing blood clots.

The computer model developed by Nguyen and his team simulates pressure flows through bileaflet MHVs by representing blood vessels as a computational mesh, where calculations are performed for individual blocks of the mesh. Their crucial advance was in enabling this mesh to move and evolve in response to the leaflet movements.

The researchers validated their computer model through laboratory experiments with a full 3D reproduction of the heart's circulation system. Particle imaging equipment allowed them to visualize the fluid dynamics under different scenarios including pulsatile flow, which follows the pattern of a typical cardiac cycle.

“We obtained good agreement between our computer simulations and the experiments in terms of the magnitude and velocity of blood flow through the leaflets,” states Nguyen. The researchers also found that leaflet hinges might play a vital role in clotting, because individual hinges have different tolerances that can disrupt normal blood flow and cause stress in the vein walls.

This research is a first crucial step in understanding the impact of MHVs on blood flow. “Ultimately we hope to provide doctors with a tool to evaluate blood flow dynamics and other related aspects in patients with newly implanted valves,” says Nguyen.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

Journal information

Nguyen, V.-T., Kuan, Y. H., Chen, P.-Y., Ge, L., Sotiropoulos, F. et al. Experimentally validated hemodynamics simulations of mechanical heart valves in three dimensions. Cardiovascular Engineering and Technology 3, 88–100 (2012)

A*STAR Research | Research asia research news
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>