Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel breast screening technology increases diagnostic accuracy

The addition of three-dimensional breast imaging - a technology called tomosynthesis - to standard digital mammography significantly increases radiologists' diagnostic accuracy while reducing false positive recall rates, according to the results of a multi-center study published in Radiology.

"This is the first major advance in breast imaging and breast cancer screening since the development of breast MRI," said lead researcher Elizabeth A. Rafferty, M.D., director of Breast Imaging at the Avon Comprehensive Breast Center at Massachusetts General Hospital in Boston. "The beauty of tomosynthesis is that it addresses two major concerns with screening mammography: missed cancers and false positive rates."

According to the National Cancer Institute, there is convincing evidence that screening mammography reduces breast cancer mortality in women between the ages of 40 and 74. However, as many as 30 percent of breast cancers are not detected by mammography and an additional eight to 10 percent of women who undergo a screening mammogram are recalled for further testing when no cancer is present (called a false positive result).

Unlike a screening digital mammogram, which involves two X-ray images of each breast, breast tomosynthesis captures multiple, low-dose images from different angles around the breast. The images are then used to produce a three-dimensional reconstruction of the breast. Both digital mammography and breast tomosynthesis, which was approved by the United States Food and Drug Administration (FDA) in February of 2011, can be performed on the same mammography equipment in rapid succession.

Dr. Rafferty's study involved 1,192 women recruited from five sites, of whom 997, including 780 screening cases and 217 women who needed pre-biopsy breast imaging, had complete data sets. Each of the women underwent a standard digital mammogram followed by breast tomosynthesis. The total radiation dose for the combined procedure was less than 3 milligray, which is the FDA limit for a single mammogram.

Drawing from the eligible cases, the researchers then conducted two reader studies involving 312 and 310 cases, respectively. Twelve radiologists participated in the first reader study; 15 radiologists in the second. A total of 48 cancers were included in the first reader study; 51 cancers in the second.

Compared to digital mammography alone, the use of both standard mammogram and tomosynthesis resulted in increased diagnostic accuracy for all 27 radiologists. Additionally, the diagnostic sensitivity of the combined exam — or the rate at which cancer present in the breast was correctly identified — increased by 10.7 percent for radiologists in Reader Study 1 and 16 percent for radiologists in Reader Study 2.

"Almost all of the gains in diagnostic sensitivity with the combined modality were attributable to the improved detection and characterization of invasive cancers, which are the cancers we are most concerned about because of their potential to metastasize," Dr. Rafferty said.

With the addition of breast tomosynthesis to standard digital mammography, false positive recall rates also significantly decreased for all 27 of the radiologists. Absolute recall rate reductions of 38.6 percent and 17.1 percent were seen in Reader Studies 1 and 2, respectively.

"In the clinical setting, we would expect that type of reduction in recall rate to translate into a substantial number of unnecessary diagnostic tests being avoided," Dr. Rafferty said.

"Assessing Radiologist Performance Using Combined Digital Mammography and Breast Tomosynthesis Compared to Digital Mammography Alone: Results of a Multicenter, Multireader Trial." Collaborating with Dr. Rafferty were Jeong Mi Park, M.D., Liane E. Philpotts, M.D., Steven P. Poplack, M.D., Jules H. Sumkin, M.D., Elkan F. Halpern, Ph.D., and Loren T. Niklason, Ph.D.

Radiology is edited by Herbert Y. Kressel, M.D., Harvard Medical School, Boston, Mass., and owned and published by the Radiological Society of North America, Inc.

RSNA is an association of more than 50,000 radiologists, radiation oncologists, medical physicists and related scientists, promoting excellence in patient care and health care delivery through education, research and technologic innovation. The Society is based in Oak Brook, Ill.

For patient-friendly information on breast imaging, visit

Linda Brooks | EurekAlert!
Further information:

More articles from Medical Engineering:

nachricht Gentle sensors for diagnosing brain disorders
29.09.2016 | King Abdullah University of Science and Technology

nachricht New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development
28.09.2016 | Lund University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>