Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Listening Technology for Wheelsets for Safer Trains

05.11.2012
With RailBAM, Siemens is providing an acoustic monitoring system that detects damage to the wheelset bearings in trains at an early stage.

This solution improves the reliability of rail transport and reduces maintenance costs. As reported in the current issue of Pictures of the Future, the system registers the running sounds of wheelset bearings in trains that are under way.



For more than two years, RailBAM has been monitoring 45 trains with a total of 9,000 wheelsets in Southampton, UK. Normally, wheelsets are replaced every 1.2 million kilometers. Because RailBAM can detect damage long before an actual failure occurs, technicians can now replace wheelsets whenever the measurement data shows the first changes.

As a result, it has been possible to extend the maintenance intervals for powered and non-powered wheelsets by ten and 50 percent, respectively. RailBAM was developed by Track IQ, a Siemens partner, and is marketed exclusively by Siemens.

Wheelsets experience more operational stress than any other train component. Wind and weather, high speeds and vibration make them susceptible to wear and contamination from dirt. At the same time, damage to a wheelset is a serious risk to safety, because if a wheel fails it is likely that the train will derail. Wheelsets are therefore regularly subject to visual inspection and ultrasound examination and after a set number of kilometers they are replaced.

RailBAM now makes it possible to regularly monitor the wheelset bearings of trains in service. The system is based on an acoustic sensor that is mounted along the rails and continuously records the running sounds of all trains. At the depot, measurement data is collected and assigned to a specific train based on the railroad's timetable. Software extracts the measurement values for the wheelsets from the acoustical data and compares them to reference values.

Early stages of damage to bearings cause characteristic changes in the running sounds of the wheels. If such alterations appear, the effected wheelset will be replaced the next time the train returns to a depot. In this way, sudden failure can be prevented. Conversely, a wheelset is allowed to remain in service beyond its normal maintenance interval, as long as the monitoring data doesn't show any problems that require attention.

At the moment, RailBAM can be used to monitor trains traveling at speeds up to a maximum of 160 kilometer per hour. However, due to the high level of interest from various rail operators, there are plans to adapt the system so that it can also operate with high-speed trains.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Transportation and Logistics:

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Combating traffic congestion with advanced data analytics
17.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>