Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish use sunscreen also for camouflage

30.01.2014
Zebrafish embryos camouflage themselves against predators by adapting to the surface.

Neurobiologists from the University of Zurich have discovered that this camouflage mechanism actually started out as sunscreen to protect the fish against DNA damaging shortwave solar radiation at embryonic stages.


Zebrafish with different pigmentation and camouflage. The bottom animal is on a light subsurface. The top animal is blind, thus incapable of discerning the lightness of the subsurface and

Picture: Stephan Neuhauss / UZH


Camouflage among zebrafish larvae. The left-hand larva is exposed to bright light and has little pigmentation; the right-hand larva against a dark subsurface is more heavily pigmented.

Picture: Stephan Neuhauss / UZH

For diurnal animals like zebrafish embryos, which grow up in shallow pools and are practically see-through, exposure to the sun constitutes a major problem since ultraviolet (UV) radiation damages DNA.

Neurobiologists Stephan Neuhauss and Kaspar Müller from the Institute of Molecular Biology at the University of Zurich set about investigating which mechanisms zebrafish embryos use to protect themselves against the aggressive UV radiation. Interestingly, the two scientists reveal in their article recently published in the journal PLOS ONE, the UV-protection mechanism also doubles as camouflage.

Sunscreen already from day two

For their study, the scientists examined zebrafish embryos, the skin cells of which already possess pigments known as melanosomes from the second day after fertilization – even before their eyes have developed. “In strong solar radiation, the pigments spread along predetermined paths within the cells, after which the zebrafish embryo appears darker,” explains Neuhauss. As the researchers discovered, this distribution process of dark pigments in the presence of intense light always takes place, regardless of whether the embryo is on a light or dark subsurface. Surprisingly, the embryos display a noticeable change from the third day after fertilization: They adapt to the subsurface. According to Neuhauss, this is because the embryos can see from day three and have eyes with UV-sensitive photoreceptors in the retina. From this moment on, they are able to discern whether they are on a light or dark subsurface and can adapt and thus camouflage themselves accordingly. As long as the animal is in the embryonic stage and see-through, however, the benefits of UV protection prevail.

When the skin is no longer transparent and does not require protection against aggressive radiation, the selective distribution of the pigments within the skin cells is predominantly used for camouflage purposes. And with good reason: Being able to adapt to a lighter or darker subsurface and camouflage yourself reduces the chance of being spotted and eaten. “The original UV protection turns into a camouflage mechanism – a striking example of the secondary use of an existing capability,” Neuhauss concludes.

Literature:

Kaspar P. Müller, Stephan C. F. Neuhauss, Sunscreen for Fish: Co-option of UV light protection for camouflage. PLOS ONE. January 29, 2014. Link: http://dx.plos.org/10.1371/journal.pone.0087372

Bettina Jakob | Universität Zürich
Further information:
http://www.mediadesk.uzh.ch/index.html

More articles from Life Sciences:

nachricht Cancer: Molecularly shutting down cancer cachexia
30.08.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Bringing artificial enzymes closer to nature
30.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>