Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worker Wasps Grow Visual Brains, Queens Stay in the Dark

07.01.2014
A queen in a paperwasp colony largely stays in the dark. The worker wasps, who fly outside to seek food and building materials, see much more of the world around them.

A new study indicates that the brain regions involved in sensory perception also develop differently in these castes, according to the different behavioral reliance on the senses. The study is published in Behavioral Ecology and Sociobiology.


A colony of paperwasps, Apoica pallens

“The wasps in different castes within a colony don’t differ much genetically. The differences we see show the signature of the environment on brain development,” said Sean O’Donnell, PhD, a professor in Drexel University’s College of Arts and Sciences who led the study. O’Donnell’s team found that the queen wasps had smaller brain regions for processing visual information than the workers in their own colonies. The pattern held across most of the 12 species of paperwasps they studied.

Most other research in how animals’ environments affect their nervous systems – known as neuroecology – emphasizes comparisons between the brains of different species with diverse lifestyles and behaviors, such as comparisons between nocturnal and diurnal species of birds or bats.

“The strong behavioral and ecological differences between individuals within insect colonies make them powerful tools for studying how individual brain differences come about, and their functional significance,” O’Donnell said.

To test how queen-worker brain differences come about, O’Donnell’s team also compared differences in queen and worker wasps’ brain development across different wasp species they studied. In species where adult wasps fight for the queen position, it would make sense for the caste brain differences to be less pronounced than in species where adult wasps emerge with their caste roles already established – if brain development followed a preordained program for each assigned role.

Instead, the researchers found larger differences between worker and queen wasp brains in species where adult wasps fought for dominance – a finding that suggests brain plasticity, or development in adulthood in response to environmental and behavioral needs. O’Donnell noted that sampling juvenile wasps at multiple stages of brain development would help confirm the finding suggested by his study that only looked at adult wasp brains.

News Media Contact
Rachel Ewing
News Officer, University Communications
raewing@drexel.edu
Phone: 215-895-2614
Mobile: 215-298-4600

Rachel Ewing | EurekAlert!
Further information:
http://ww.drexel.edu
http://www.drexel.edu/now/news-media/releases/archive/2014/January/Wasp-Castes-Sensory-Brain-Structures/

More articles from Life Sciences:

nachricht Cancer: Molecularly shutting down cancer cachexia
30.08.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Bringing artificial enzymes closer to nature
30.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Environmental DNA uncovers biodiversity in rivers

30.08.2016 | Ecology, The Environment and Conservation

Solar houses scientifically evaluated

30.08.2016 | Power and Electrical Engineering

Amazon forests: Biodiversity can help mitigate climate risks

30.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>