Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inner weapons against allergies: Gut bacteria control allergic diseases

26.03.2012
When poet Walt Whitman wrote that we "contain multitudes," he was speaking metaphorically, but he was correct in the literal sense. Every human being carries over 100 trillion individual bacterial cells within the intestine -- ten times more cells than comprise the body itself.

Now, David Artis, PhD, associate professor of Microbiology, along with postdoctoral fellow David Hill, PhD, from the Perelman School of Medicine at the University of Pennsylvania, and collaborators from The Children's Hospital of Philadelphia and institutions in Japan and Germany, have found that these commensal bacteria might play an important role in influencing and controlling allergic inflammation. The commensal relationship that develops between humans and internal bacteria is one in which both humans and bacteria derive benefits.


This is a mouse lung stained to visualize differentiated epithelial cells and macrophages, a type of immune cell. Credit: David Hill, Ph.D., Perelman School of Medicine, University of Pennsylvania

The study -- appearing this week in Nature Medicine -- suggests that therapeutic targeting of immune cell responses to resident gut bacteria may be beneficial in treating allergic diseases.

The researchers build on previous work demonstrating that selective manipulation of the commensal bacterial population could affect the immune system. "Studies in human patients suggest that changes in commensal populations or exposure to broad spectrum antibiotics can predispose patients to the development of systemic allergic diseases," Hill explains. "In addition, previous studies in animal models have shown that commensal bacteria can influence local immune cells in the intestine. However, the cellular and molecular mechanisms by which commensal bacteria influence the host immune system, in particular the branches of the host immune system that regulate allergic inflammation, are not well understood."

Artis and his colleagues focused on the role of basophils, a type of white blood cell, in causing allergic inflammation, and the relationship between basophil responses and allergic disease.

The investigators administered broad-spectrum oral antibiotics to deplete certain types of bacteria in mice and to subsequently examine the affects on levels of circulating basophils in the blood. Using an animal-based model of allergic inflammation in the lung that shares characteristics with asthma in humans, they found that antibiotic treatment resulted in significantly elevated basophil responses and a marked increase in the amount of basophil-mediated allergic airway inflammation. Elevated serum levels of IgE, an important mediator in allergic disease, were also observed.

After the antibiotic-treated mice were exposed to house dust mite allergen (HDM), a human allergen and a model of allergic airway disease in mice, they showed higher basophil responses in the blood and lymph nodes as well as a heightened allergic response with increased inflammation in the lungs.

Germ-free mice, which are reared in a sterile environment and thus lack all live commensal bacteria, also showed similar responses to those observed in antibiotic-treated mice when exposed to HDM. This finding indicates that commensal bacteria-derived signals are responsible for maintaining normal basophil numbers in the steady-state.

Artis and his colleagues also found that serum concentrations of IgE and circulating basophil numbers were limited by B cell-intrinsic expression of myeloid differentiation factor 88 (MyD88), a protein known to play a role in the recognition of bacteria-derived factors. Signals derived from the commensal bacteria were found to act via IgE to control the number of circulating basophils by limiting the proliferation of basophil precursor cells in the bone marrow.

All of these findings indicate important new processes by which resident commensal bacterial populations influence and control basophil responses and thus influence the response to allergens in our environment.

"The identification of a mechanistic connection between commensal bacteria, basophils, and allergic disease illuminates several new avenues that could be targeted by future therapeutics to block or inhibit the development of allergic disease," Artis notes. Further study and identification of these commensal pathways could also have implications for other chronic diseases related to immune system functioning.

Artis and his colleagues hope to further understand this intricate interplay between the immune system and commensal bacteria. "It may be beneficial to identify the specific commensals and commensal-derived signals that regulate circulating basophil populations as this could lead to the development of new probiotic or other commensal-derived therapies," he says. The work makes clear that the bacterial multitudes within our bodies may have a function and a value never before appreciated.

This work was funded by grants from the National Institute of Allergy and Infectious Disease, the National Cancer Institute, the Burroughs Wellcome Fund, the Penn Genome Frontiers Institute, and the Penn Center for the Molecular Studies in Digestive and Liver Diseases.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>