Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inner weapons against allergies: Gut bacteria control allergic diseases

26.03.2012
When poet Walt Whitman wrote that we "contain multitudes," he was speaking metaphorically, but he was correct in the literal sense. Every human being carries over 100 trillion individual bacterial cells within the intestine -- ten times more cells than comprise the body itself.

Now, David Artis, PhD, associate professor of Microbiology, along with postdoctoral fellow David Hill, PhD, from the Perelman School of Medicine at the University of Pennsylvania, and collaborators from The Children's Hospital of Philadelphia and institutions in Japan and Germany, have found that these commensal bacteria might play an important role in influencing and controlling allergic inflammation. The commensal relationship that develops between humans and internal bacteria is one in which both humans and bacteria derive benefits.


This is a mouse lung stained to visualize differentiated epithelial cells and macrophages, a type of immune cell. Credit: David Hill, Ph.D., Perelman School of Medicine, University of Pennsylvania

The study -- appearing this week in Nature Medicine -- suggests that therapeutic targeting of immune cell responses to resident gut bacteria may be beneficial in treating allergic diseases.

The researchers build on previous work demonstrating that selective manipulation of the commensal bacterial population could affect the immune system. "Studies in human patients suggest that changes in commensal populations or exposure to broad spectrum antibiotics can predispose patients to the development of systemic allergic diseases," Hill explains. "In addition, previous studies in animal models have shown that commensal bacteria can influence local immune cells in the intestine. However, the cellular and molecular mechanisms by which commensal bacteria influence the host immune system, in particular the branches of the host immune system that regulate allergic inflammation, are not well understood."

Artis and his colleagues focused on the role of basophils, a type of white blood cell, in causing allergic inflammation, and the relationship between basophil responses and allergic disease.

The investigators administered broad-spectrum oral antibiotics to deplete certain types of bacteria in mice and to subsequently examine the affects on levels of circulating basophils in the blood. Using an animal-based model of allergic inflammation in the lung that shares characteristics with asthma in humans, they found that antibiotic treatment resulted in significantly elevated basophil responses and a marked increase in the amount of basophil-mediated allergic airway inflammation. Elevated serum levels of IgE, an important mediator in allergic disease, were also observed.

After the antibiotic-treated mice were exposed to house dust mite allergen (HDM), a human allergen and a model of allergic airway disease in mice, they showed higher basophil responses in the blood and lymph nodes as well as a heightened allergic response with increased inflammation in the lungs.

Germ-free mice, which are reared in a sterile environment and thus lack all live commensal bacteria, also showed similar responses to those observed in antibiotic-treated mice when exposed to HDM. This finding indicates that commensal bacteria-derived signals are responsible for maintaining normal basophil numbers in the steady-state.

Artis and his colleagues also found that serum concentrations of IgE and circulating basophil numbers were limited by B cell-intrinsic expression of myeloid differentiation factor 88 (MyD88), a protein known to play a role in the recognition of bacteria-derived factors. Signals derived from the commensal bacteria were found to act via IgE to control the number of circulating basophils by limiting the proliferation of basophil precursor cells in the bone marrow.

All of these findings indicate important new processes by which resident commensal bacterial populations influence and control basophil responses and thus influence the response to allergens in our environment.

"The identification of a mechanistic connection between commensal bacteria, basophils, and allergic disease illuminates several new avenues that could be targeted by future therapeutics to block or inhibit the development of allergic disease," Artis notes. Further study and identification of these commensal pathways could also have implications for other chronic diseases related to immune system functioning.

Artis and his colleagues hope to further understand this intricate interplay between the immune system and commensal bacteria. "It may be beneficial to identify the specific commensals and commensal-derived signals that regulate circulating basophil populations as this could lead to the development of new probiotic or other commensal-derived therapies," he says. The work makes clear that the bacterial multitudes within our bodies may have a function and a value never before appreciated.

This work was funded by grants from the National Institute of Allergy and Infectious Disease, the National Cancer Institute, the Burroughs Wellcome Fund, the Penn Genome Frontiers Institute, and the Penn Center for the Molecular Studies in Digestive and Liver Diseases.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

nachricht Designing ultrasound tools with Lego-like proteins
26.08.2016 | California Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Symmetry crucial for building key biomaterial collagen in the lab

26.08.2016 | Health and Medicine

Volcanic eruption masked acceleration in sea level rise

26.08.2016 | Earth Sciences

Moth takes advantage of defensive compounds in Physalis fruits

26.08.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>