Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vitreous humour in the eye helps to establish time of death

08.12.2008
A team of researchers from the University of Santiago de Compostela has proposed a new method to estimate the approximate time of death.

This is based on the analysis of several substances from the vitreous humour of the eye of cadavers, according to an article published in the journal entitled Statistics in Medicine. Using this system, scientists have developed a piece of software that makes it possible to establish precisely the post mortem interval (PMI), information that will make the work of the police and the courts of justice easier.

To apply this technique the researchers analyse initially potassium, urea and hypoxantine (a DNA metabolite) concentrations present in the vitreous humour of the eye of the human cadaver, and introduce these figures into a computer programme. The software that has been invented by these Galician scientists uses this information and is capable of establishing the time at which death occurred.

“The equations we have developed now make it possible for us to estimate the PMI more precisely than before, and provide a useful and accessible tool to forensic pathologists that is easy to use” José Ignacio Munoz Barús, one of the authors of the study, explains to SINC, and who is also a specialist doctor from the Institute of Legal Medicine at the University of Santiago de Compostela.

The traditional techniques for estimating the PMI are based on the study of parameters such as the rectal temperature of the cadaver or one of the organs, such as the liver, in rigor mortis, or post mortem lividity examination. These methods are complemented by biochemical analyses of the body fluids. One of these is the vitreous humour, the gelatinous liquid that is found behind the crystalline lens of the eye.

Muñoz Barús points out that the study, published recently in Statistics in
Medicine, suggests mathematical models that are “more flexible, useful and efficient” than those that have been applied until now. The doctor describes some of the previous techniques as “not very reproducible, not very precise and untested in the field”, such as the deterioration of DNA, immunoreaction or the traditional techniques based on the biochemistry of the vitreous humour.

In this last case the researcher specifies that previous studies used a “linear regression mathematical model” which assumes that the concentrations of potassium, hypoxantine and urea increase in a linear way that is more or less constant throughout the post mortem interval. However, the new analyses suggest that those premises are not valid and that the statistical models known as generalized additive models (GAM) or the support vector machine (SVM) models are more flexible and much more useful, since they avoid the assumption of linearity”.

The precision and usefulness of these two models have been confirmed by chemical analysis in more than 200 vitreous humour samples. The doctor and the two mathematicians who have performed the study have verified that the SVM method offers more precise data, although the GAM method is more easy to assimilate to the linear model and understand graphically and numerically, “ for which reason both complement each other”.

The three scientists have incorporated all this information into the development of a free computer package (based on code “R”) which makes it possible to establish the PMI using four predictive variables: concentrations of potassium, hypoxantine and urea, and cause of death. In addition, the software makes it possible to show the results graphically. “In this way the estimation of the time of death and expert examination are made easier when attending the courts of justice”, Munoz Barús points out to SINC

“The precise determination of the exact time of death has been the subject of various studies going back to the 19th century, since this information is of paramount importance in the field of legal medicine, owing to its repercussions on crime and civil society. This new method offers an important contribution to this field”, the researcher concludes.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

More articles from Life Sciences:

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

nachricht Sun protection for plants - Plant substances can protect plants against harmful UV radiation
22.08.2016 | Max-Planck-Institut für Molekulare Pflanzenphysiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

Im Focus: Every atom counts

Malignant cancer cells not only proliferate faster than most body cells. They are also more dependent on the most important cellular garbage disposal unit, the proteasome, which degrades defective proteins. Therapies for some types of cancer exploit this dependence: Patients are treated with inhibitors, which block the proteasome. The ensuing pile-up of junk overwhelms the cancer cell, ultimately killing it. Scientists have now succeeded in determining the human proteasome’s 3D structure in unprecedented detail and have deciphered the mechanism by which inhibitors block the proteasome. Their results will pave the way to develop more effective proteasome inhibitors for cancer therapy.

In order to understand how cellular machines such as the proteasome work, it is essential to determine their three-dimensional structure in detail. With its...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

Towards the connected, automated and electrified automobiles: AMAA conference in Brussels

02.08.2016 | Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

 
Latest News

New microchip demonstrates efficiency and scalable design

23.08.2016 | Information Technology

Genetic Regulation of the Thymus Function Identified

23.08.2016 | Life Sciences

Biomass turnover time in ecosystems is halved by land use

23.08.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>