Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Iowa Researchers Identify Caffeine-Consuming Bacterium

As it turns out, humans aren't the only organisms that turn to caffeine for a pick-me-up. University of Iowa scientists have identified four different bacteria that actually can live on caffeine.

One of them, known as Pseudomonas putida CBB5, was found in a flowerbed outside a UI research laboratory. The research team says the discovery -- and the new understanding of how the process works -- could in the future allow scientists to convert waste from leftover coffee, tea and even chocolate into useful substances, like pharmaceuticals, animal feed or biofuels.

Previous studies have also discovered caffeine-degrading bacteria, but the UI team took the research one step further. They identified the gene sequence that enables the bacterium to break down the caffeine compound in nature.

Caffeine is found naturally in more than 60 different plants and is composed of carbon, hydrogen, nitrogen and oxygen. Its molecular structure features three clusters of carbon and hydrogen atoms known as methyl groups, enabling caffeine to resist degradation by most bacteria.

Led by UI chemical and biochemical engineering doctoral student Ryan Summers, the study found that Pseudomonas putida CBB5 uses four newly discovered digestive proteins to break caffeine down into xanthine and then to carbon dioxide and ammonia. It removes the methyl groups from the molecule (a process called N-demethylation), allowing the bacteria to feed on the nitrogen atoms in the interior of the molecule (xanthine).

The caffeine digestive proteins from CBB5 can be used to convert caffeine into building blocks for drugs used to treat asthma, improve blood flow and stabilize heart arrhythmias.

"With one or two methyl groups removed, the remainder of the molecule can be used as the base for a number of pharmaceuticals," Summers said. "You basically use the new genes and enzymes that could take something we have a lot of -- like caffeine -- and make drugs that are typically very expensive. And that process could lower the costs for people who need them."

Summers said the bacterium's digestive proteins could also be used to remove caffeine and related compounds from large amounts of waste generated from coffee and tea processing, which pollute the environment. The decaffeinated waste from these industries could be used for animal feed, or for production of transportation fuel, especially in areas where corn (for ethanol) is scarce.

The team originally thought only one enzyme was responsible for extracting methyl groups. Ultimately, they identified four (NdmA, NdmB, NdmC, and reductase) involved in the N-demethylation process. This helped them to pinpoint the genes responsible for enzyme production in the bacterium.

Summers, with UI research scientists Michael Louie and Chi Li Yu, studied the bacterium in professor Mani Subramanian's lab in the Chemical and Biochemical Engineering Department, and the Center for Biocatalysis and Bioprocessing. They initially set out to craft a dipstick measurement for nursing mothers to test caffeine levels in breast milk, but the gene discovery took the research down a different path.

"These findings are a significant leap, as other researchers have shown bacteria can grow on caffeine, but, until now, the exact mechanism was a mystery," Subramanian said. "Now that we are starting to work on this, we are finding completely new genes, and reactions that we never expected."

Summers presented the findings at the American Society for Microbiology in New Orleans in late May. He anticipates seeking a scientific publication of the study this summer.

STORY SOURCE: University of Iowa Graduate College Office of External Relations, 205 Gilmore Hall, Iowa City, Iowa 52242-2500

Alison Sullivan | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>