Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T Researchers uncover major source of evolutionary differences among species

21.12.2012
University of Toronto Faculty of Medicine researchers have uncovered a genetic basis for fundamental differences between humans and other vertebrates that could also help explain why humans are susceptible to diseases not found in other species.

Scientists have wondered why vertebrate species, which look and behave very differently from one another, nevertheless share very similar repertoires of genes. For example, despite obvious physical differences, humans and chimpanzees share a nearly identical set of genes.

The team sequenced and compared the composition of hundreds of thousands of genetic messages in equivalent organs, such as brain, heart and liver, from 10 different vertebrate species, ranging from human to frog. They found that alternative splicing — a process by which a single gene can give rise to multiple proteins — has dramatically changed the structure and complexity of genetic messages during vertebrate evolution.

The results suggest that differences in the ways genetic messages are spliced have played a major role in the evolution of fundamental characteristics of species. However, the same process that makes species look different from one another could also account for differences in their disease susceptibility.

"The same genetic mechanisms responsible for a species' identity could help scientists understand why humans are prone to certain diseases such as Alzheimer's and particular types of cancer that are not found in other species," says Nuno Barbosa-Morais, the study's lead author and a computational biologist in U of T Faculty of Medicine's Donnelly Centre for Cellular and Biomolecular Research. "Our research may lead to the design of improved approaches to study and treat human diseases."

One of the team's major findings is that the alternative splicing process is more complex in humans and other primates compared to species such as mouse, chicken and frog.

"Our observations provide new insight into the genetic basis of complexity of organs such as the human brain," says Benjamin Blencowe, Professor in U of T's Banting and Best Department of Research and the Department of Molecular Genetics, and the study's senior author.

"The fact that alternative splicing is very different even between closely related vertebrate species could ultimately help explain how we are unique."

The study, "The Evolutionary Landscape of Alternative Slicing in Vertebrate Species", is published in the December 21 issue of Science.

Nicole Bodnar | EurekAlert!
Further information:
http://www.utoronto.ca

Further reports about: genetic mechanism human diseases physical differences

More articles from Life Sciences:

nachricht From rigid to flexible
29.08.2016 | Technische Universität Dresden

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

3-D-printed structures 'remember' their shapes

29.08.2016 | Materials Sciences

From rigid to flexible

29.08.2016 | Life Sciences

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>