Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Research New Way to Battle Bacteria

25.01.2013
Scientists at the SUNY College of Environmental Science and Forestry (ESF) are developing a biochemical process that uses a protein molecule to disrupt the process by which bacteria become virulent, a finding that could have widespread implications for human health.

The work is led by Dr. Christopher Nomura of the college’s Department of Chemistry, who discovered that a simple protein molecule can interrupt the process bacteria use to move, eat, attach to surfaces, and communicate with one another or, in other words, to become potentially harmful.

“This is fundamentally a new way to think about blocking bacteria from becoming virulent,” Nomura said.

Exposing bacteria to the synthetic protein disrupts the developmental sequence that is common among such organisms, he said. This gives the process the potential to work against an array of bacteria including those that threaten patients with certain illnesses, such as cystic fibrosis, stubborn strains that commonly affect hospital patients and strains that occur in desert environments and prove troublesome for U.S. troops serving in Afghanistan or similar arid environments.

The college is seeking to patent the process.

Nomura’s research group focuses on the synthesis and properties of eco-friendly, biologically based materials, in particular the production of biobased polymers that can be used to make biodegradable plastics. He and his postdoctoral researcher, Dr. Benjamin Lundgren, were working on experiments in that realm when they overproduced some proteins that they thought would increase the expression of genes to produce the bioplastic materials. But instead of making the bacteria produce large quantities of plastics, the protein had the opposite effect.

Nomura began to investigate the chemistry behind the startling development and discovered that specific proteins can attach themselves to the bacterial DNA in a manner that essentially prevents the organism from expressing the information contained within its genes and results in short circuiting the ability of bacteria to respond to changes in their environment.

The antimicrobial process has an added advantage over traditional antibiotics currently in use: It will be extremely difficult for bacteria to do an end run around the process by simply mutating. Since the protein targets hundreds of genes simultaneously, a corresponding mutation would also involve hundreds of changes. Traditional antibiotics attack only one aspect of the bacteria’s development, making mutation a simpler task.

“Basically, we’re interrupting the flow of genetic information in the cell, in effect ‘hacking’ the program of the bacterial cell,” Nomura said. “If we can fundamentally control the mechanism of gene expression, we can control what the bacteria are capable of doing. We can prevent them from becoming virulent.”

Claire B. Dunn | Newswise
Further information:
http://www.esf.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>