Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists confirm that the Justinianic Plague was caused by the bacterium Yersinia pestis

10.05.2013
Ancient DNA analyses of skeletal remains of plague victims from the 6th century AD provide information about the phylogeny and the place of origin of this pandemic

From the several pandemics generally called 'pestilences' three are historically recognized as due to plague, but only for the third pandemic of the 19th to 21st centuries AD there were microbiological evidences that the causing agent was the bacterium Yersinia pestis.

"For a long time scholars from different disciplines have intensively discussed about the actual etiological agents of the past pandemics. Only ancient DNA analyses carried out on skeletal remains of plague victims could finally conclude the debate", said Dr. Barbara Bramanti of the Palaeogenetics Group at the Institute of Anthropology at Johannes Gutenberg University Mainz (JGU).

About two years ago, she headed the international team which demonstrated beyond any doubt that Y. pestis also caused the second pandemic of the 14th-17th centuries including the Black Death, the infamous epidemic that ravaged Europe from 1346 to 1351. Bramanti and her Mainz colleague Stephanie Hänsch now cooperated with the University of Munich, the German Bundeswehr, and international scholars to solve the debate as to whether Y. pestis caused the so-called Justinianic Plague of the 6th to 8th centuries AD. The results of ancient DNA analyses carried out on the early medieval cemetery of Aschheim in Bavaria were published last week in PloS Pathogens.

They confirmed unambiguously that Y. pestis was indeed the causing agent of the first pandemic, in contrast to what has been postulated by other scientists recently. This revolutionary result is supported by the analysis of the genotype of the ancient strain which provide information about the phylogeny and the place of origin of this plague. As for the second and third pandemic, the original sources of the plague bacillus were in Asia.

"It remains questionable whether at the time of the Byzantine Emperor Justinian only one strain or more were disseminated in Europe, as it was at the time of the Black Death," suggested Bramanti and Hänsch. To further investigate this and other open questions about the modalities and route of transmission of the medieval plagues, Bramanti has recently obtained an ERC Advanced Grant for the project "The medieval plagues: ecology, transmission modalities and routes of the infection" (MedPlag) and will move to the Center for Ecological and Evolutionary Synthesis (CEES) at the University of Oslo in Norway. The CEES, chaired by Nils Chr. Stenseth, has an outstanding and rewarded record of excellence in the research on infectious diseases and in particular on Y. pestis.

The MedPlag research group is constituted by Stephanie Hänsch, Lars Walloe, Boris Schmid, Kyrre L. Kausrud and Ryan W. Easterday (University of Oslo, Norway), Mark Achtman (University of Warwick, UK), Elisabeth Carniel (Institute Pasteur, Paris, France), Raffaella Bianucci (University of Turin, Italy), Ulf Büntgen (Swiss Federal Research Institute for Forest, Snow and Landscape, Switzerland) as well as celebrated historians and archaeologists from Europe, Asia, and America.

Publication:
Harbeck M, Seifert L, Hänsch S, Wagner DM, Birdsell D, Parise KL, Wiechmann I, Grupe G, Thomas A, Keim P, Zöller L, Bramanti B, Riehm JM, Scholz HC (2013) Yersinia pestis DNA from Skeletal Remains from the 6th Century AD Reveals Insights into Justinianic Plague. PLoS Pathog 9(5): e1003349
doi:10.1371/journal.ppat.1003349

Further information:
Dr. Barbara Bramanti
Palaeogenetics Group
Institute of Anthropology
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-38453
e-mail: bramanti@uni-mainz.de
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/Deutsch/Mitarbeiter/Bramanti.html

Weitere Informationen:

http://www.uni-mainz.de/presse/16374_ENG_HTML.php
- press release ;
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/English/Staff/Bramanti.html

- Dr. Barbara Bramanti ;

http://www.uni-mainz.de/presse/13883_ENG_HTML.php
- "Yersinia pestis bacteria clearly identified as the cause of the big plague epidemic of the Middle Ages" (JGU press release, 8 Oct. 2010)

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/

Further reports about: CEES DNA analyses MedPlag Palaeogenetics Yersinia pestis ancient DNA plague

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>