Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sandwich in a Pumpkin

Supramolecular velcro for underwater adhesion

When gluing things together, both surfaces usually need to be dry. Gluing wet surfaces or surfaces under water is a challenge. In the journal Angewandte Chemie, Korean scientists have now introduced a completely new concept. They were able to achieve reversible underwater adhesion by using supramolecular "velcro".

Previously, researchers have primarily attempted to mimic natural underwater "adhesives" like the adhesive molecules used by mussels. Such substances adhere well in wet surroundings, but the adhesion is not reversible. A team led by Kimoon Kim at Pohang University of Science and Technology in Korea has chosen a different approach: they have moved away from natural models—and achieved reversible underwater adhesion.

The primary challenge for conventional adhesion under water is that the water molecules between the surfaces to be glued and the adhesive need to be removed so that these surfaces can react chemically. This is not the case with the new approach. Kim and his co-workers use host–guest interactions between water-soluble host molecule with a hydrophobic pocket and ionic guest molecule with a hydrophobic block. They form robust noncovalent bonds in water. In fact, the repulsion of water molecules is the driving force for formation of the bond, mediated by ion–dipole and hydrophobic interactions.

The researchers chose curcurbit[7]uril as their host and aminomethylferrocene as the guest. Cucurbit[n]uril (n = 5,6,7,8 and 10) are macrocycles—large, ring-shaped molecules made of multiple glycoluril units that can bind other molecules within their cavities. Their name is derived from cucurbita, the Latin name for pumpkin, which they resemble in shape. Ferrocenes are also known as sandwich compounds. The "bread" consists of two aromatic rings of five carbon atoms, while the "filling" is a single iron atom held in the middle. The ferrocene chosen by the researchers lodges very securely and specifically inside a "pumpkin" made of seven glycoluril units.

The researchers produced some silicon strips with many "pumpkins" attached, as well as some with many "sandwiches". When these strips come into contact with each other they stick together tightly, similar to Velcro. Once stuck together, a 1 x 1 cm piece of this supramolecular velcro can hold a weight of 2 kg in water. After drying in air it can hold as much as 4 kg. This is more than double-sided sticky tape can hold.

Like a macroscopic Velcro strip, the molecular version can be separated with a strong pull and reused multiple times. The adhesion can also be reversed chemically through application of a hypochlorite solution, which oxidizes the iron atoms. After reduction with an agent such as ascorbic acid, the velcro can adhere again.

Because the materials used are biocompatible, biological applications may be possible, for example in surgery suture or repairing live tissue. In comparison, the mussel mimetic underwater adhesives require strong oxidizing agents for curing to these applications, which is not the case with the new system.

About the Author
Professor Kimoon Kim is Director of the Center for Self-assembly and Complexity, under Institute for Basic Science (IBS), a newly created research initiative to make the Republic of Korea strong in fundamental research as well as developing new technologies. He also holds a Distinguished University Professorship position at the Department of Chemistry, Pohang University of Science and Technology (POSTECH). He is well-known for his research activities in supramolecular chemistry, especially in host–guest chemistry with cucurbiturils, as well as for introducing chiral metal–organic frameworks (MOF) and their use in heterogeneous asymmetric catalysis. Kim is a recipient of several awards including the Izatt–Christensen award in 2012.

Author: Kimoon Kim, Pohang University of Science and Technology (Republic of Korea),

Title: Supramolecular Velcro for Reversible Underwater Adhesion

Angewandte Chemie International Edition, Permalink to the article:

Kimoon Kim | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>