Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals new understanding of X chromosome inactivation

27.11.2012
In a paper published in the Nov. 21 issue of Cell, a team led by Mauro Calabrese, a postdoctoral fellow at the University of North Carolina in the lab of Terry Magnuson, chair of the department of genetics and member of the UNC Lineberger Comprehensive Cancer Center, broadens the understanding of how cells regulate silencing of the X chromosome in a process known as X-inactivation.
“This is a classic example of a basic research discovery. X-inactivation is a flagship model for understanding how non-coding RNAs orchestrate large-scale control of gene expression. In the simplest terms, we are trying to understand how cells regulate expression of their genes. Our findings are relevant across the board -- by understanding how normal cells function we can apply that knowledge to similar situations in the understanding and treatment of disease,” said Calabrese.

Proper regulation of the X chromosome plays a crucial role in mammalian development. Females inherit a pair of X chromosomes from their parents, and the process of X-inactivation shuts down one of these two Xs.

“Males have XY. Females have two Xs. One of those Xs needs to get shut off. If it does not, it’s not compatible with life. It’s how we have evolved to equalize doses between males and females,” said Calabrese.

While the manner in which the X chromosome is deactivated has been actively studied for 50 years, the exact mechanisms that regulate the process remain a mystery. Calabrese’s research used high-throughput sequencing to determine the location and activity of chromosomes with far greater accuracy than previous research.

“Basically, this is using the sequencing technology as a high resolution microscope,” said Calabrese.

Under a microscope, the inactive X chromosome (Xi) appears as a cloud-like structure, because it is covered with a non-coding RNA known as Xist. In the traditional model of X-inactivation, genes located inside the cloud are completely silenced, with 15 percent of the genes from the inactive X chromosomes escaping to become active.

“The prevailing thought was that genes that escaped X inactivation were pulled out of the core and expressed out there,” said Calabrese.

The work of Calabrese’s team complicates the current model of X-inactivation by finding indications of gene activity inside the Xist cloud and the presence of inactive genes outside the cloud, both of which would not have been thought possible in the prevailing model.

“It’s kind of a subtle thing, but mechanistically it is a big difference,” said Calabrese.

Inside the Xist cloud, sequencing discovered traces of DNase I sensitivity, a feature usually linked to transcription activity. While other markers associated with transcription were absent, the presence of DNase I sensitivity suggested that the nucleus did recognize the inactive X as usable DNA, but an unknown suppressive mechanism was preventing genes from being activated.

“We were surprised to see that. If they were totally silent, you would expect this to be not there… This suggests that transcription factors or other proteins that bind DNA are still accessing the inactive X,” said Calabrese.

The other surprising findings involve the 15 percent of “escaper” genes from the inactive X. Calabrese found evidence that active genes were found both inside and outside the Xist cloud, and that silenced genes that lay alongside active genes outside of the Xist cloud remained inactive.

“If X-inactivation was a strict nuclear barrier, then pulling a gene outside the barrier would turn it on, but it has got to be more than that because when an inactivated gene that is beside an escaper is outside this domain, it is still turned off,” said Calabrese.

The presence of DNase I sensitivity within the Xist cloud and the finding of inactive genes outside of the cloud suggest that a site-specific mechanism is regulating genes on the chromosome in a more subtle way than the binary “on/off” function posited by the prevailing model. The exact mechanism for this remains unknown. Although Calabrese believes that Xist still plays a role, its exact function and whether other factors influence X-inactivation remain questions for future research.

“We know that Xist is required to turn off the inactive X. We know that. We have no idea how” said Calabrese.

Beyond revising the understanding of how X-inactivation works, Calabrese said that deeper understanding of the function of Xist could reveal more about the role of other non-coding RNAs in cellular development. These RNAs could become useful targets for future therapies and drug development.

“We know that too much expression of the wrong non-coding RNAs can lead to cancer. Also, forced expression of other non-coding RNAs can prevent cancer. Generally, we do not know how these RNAs work,” said Calabrese.

William Davis | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: DNA DNase X chromosome X-inactivation non-coding RNAs transcription factor

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

The first genome of a coral reef fish

29.09.2016 | Life Sciences

Gentle sensors for diagnosing brain disorders

29.09.2016 | Medical Engineering

Swiss space research reaches for the sky

29.09.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>