Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Notch effect steers stem cells into cells of the nervous system

11.04.2006
Stem cell scientists at the University of Edinburgh have discovered that Notch, a protein first discovered more than 80 years ago in the fruit fly, directs unspecialized embryonic stem cells to become cells of the nervous system. These unexpected findings pave the way for using lab-grown cells to model disease and test the effects of new drugs, and are published online this week in the open-access journal PLoS Biology.

Embryonic stem cells have the potential to make all 200 cell types in the body. The challenge is to restrain this diversity and uncover the signals that commit stem cells to a single specialised function. Sally Lowell and her colleagues have now established that Notch gives embryonic stem cells the critical push towards becoming cells of the nervous system.


When Notch is activated in embryonic stem cells, most turn into nerve cells (green)


When Notch is switched off, most cells remain as embryonic stem cells (pink)

The researchers show that when Notch is activated in embryonic stem cells, up to 90% of the cells in the dish become nerve cells. In any colony of embryonic stem cells, under normal conditions, many never become cells of the nervous system: they spontaneously change into other cell types or remain as embryonic stem cells.

The Notch effect can be observed in both mouse and human embryonic stem cells, and can be created without any recourse to genetic engineering - all it takes is the presence of Notch activating signals in the cells that stem cells grow on.

As individual embryonic stem cells become specialised, they communicate with those around them. Notch is a major means of communication, and has, according to Dr Lowell, “a domino effect: once it is switched on in a small group of cells, it sets off a wave of Notch activation in neighbouring cells, directing them all to become cells of the nervous system.”

This research has far-reaching implications for other aspects of stem cell research. Dr Lowell adds, “We expect our findings to shed light on how to make other types of cell, such as muscle or pancreatic cells. If we can identify the processes that Notch blocks in embryonic stem cells we will have a handle on how to get them started, and so drive embryonic stem cells to become other types of cell that are more difficult to grow in the lab”.

Says Professor Austin Smith, leading the Edinburgh team and coordinating the EuroStemCell consortium, “This discovery gives us another method to generate pure populations of nerve cells – so important for drug screening, disease modelling and potential cell therapies. As in stem cell colonies, communication between EuroStemCell researchers has been crucial to this discovery. Our work would not have been possible without information and materials from colleagues in Cambridge, Paris and Stockholm.”

This research was supported by EuroStemCell, the BBSRC, the MRC and The Wellcome Trust.

Ana Coutinho | alfa
Further information:
http://www.plos.org/press/plbi-04-05-smith.pdf

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>