Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State researchers study insects’ immune system

02.09.2005


How insects avoid getting diseases they can carry and spread to humans is the focus of research at Kansas State University.



Mike Kanost, university distinguished professor of biochemistry and head of the department of biochemistry, and researchers in his lab are studying how insects protect themselves against infection. They think the answer lies in insects’ blood, specifically proteins.

The researchers have made progress in understanding which molecules are present in the blood and their functions. The group also has identified proteins involved in the immune response that cause melanin - a coating of black pigment - to be synthesized and deposited on the surface of the pathogen.


The goal of their research is to understand how insects recognize infection caused by microorganisms such as viruses, bacteria and fungi, and the pathway of reactions that follow in the immune system.

Studying the immune system of insects is important because it can lead to useful knowledge for the improvement of biological pesticides, Kanost said. Such a method of pest control only kills specific insects and is safe for humans.

A recent development for Kanost’s group is the transition from studying caterpillars to studying mosquitoes, which have a more direct impact on humans. Understanding how proteins in mosquitoes’ blood function in immune responses may help identify ways to disrupt disease transmission by blood-feeding insects. Knowledge gained from examining caterpillars is being used to understand the mosquito’s immune system, Kanost said.

For a mosquito to bite one human, acquire a disease and then transfer it to the next person it bites poses an interesting concept for researchers. For the disease to spread, it has to survive for a certain period of time in the mosquito. The question is, how does the pathogen survive?

For a disease like malaria, the parasite has to live in an insect’s blood for part of its life cycle, all the while exposed to the mosquito’s immune system. A successful parasite has to avoid the immune system or be able to defend against it. Understanding how a pathogen can survive might result in ways to disrupt the transmission of diseases, Kanost said.

"Insects are the most abundant kind of animal," he said. "They’re very successful animals. If you want to understand biology, understanding insects is important.

"We’re at a point now where we understand at least some of what the immune responses are but how they are regulated is a big question we need to study," Kanost said. "To me, one of the aspects that’s interesting is even if we understand the immune system of one species of insect very well, there are millions of species of insects and they’re all different from each other. Even though they will have some things in common, there’s a lot to do for many lifetimes for people doing research on biochemistry in insects."

Researchers involved with the study include Maureen Gorman, research assistant professor in biochemistry, and Chansak Suwanchaichinda and Shufei Zhuang, both postdoctoral biochemistry research associates.

K-State students taking part in the research are Ana Fraire, junior in biochemistry and pre-medicine, Liberal; and Craig Doan, sophomore in biochemistry, Rose Ochieng, senior in biochemistry and pre-medicine, and Emily Ragan, graduate student in biochemistry, all of Manhattan.

Mike Kanost | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>