Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

K-State researchers study insects’ immune system

02.09.2005


How insects avoid getting diseases they can carry and spread to humans is the focus of research at Kansas State University.



Mike Kanost, university distinguished professor of biochemistry and head of the department of biochemistry, and researchers in his lab are studying how insects protect themselves against infection. They think the answer lies in insects’ blood, specifically proteins.

The researchers have made progress in understanding which molecules are present in the blood and their functions. The group also has identified proteins involved in the immune response that cause melanin - a coating of black pigment - to be synthesized and deposited on the surface of the pathogen.


The goal of their research is to understand how insects recognize infection caused by microorganisms such as viruses, bacteria and fungi, and the pathway of reactions that follow in the immune system.

Studying the immune system of insects is important because it can lead to useful knowledge for the improvement of biological pesticides, Kanost said. Such a method of pest control only kills specific insects and is safe for humans.

A recent development for Kanost’s group is the transition from studying caterpillars to studying mosquitoes, which have a more direct impact on humans. Understanding how proteins in mosquitoes’ blood function in immune responses may help identify ways to disrupt disease transmission by blood-feeding insects. Knowledge gained from examining caterpillars is being used to understand the mosquito’s immune system, Kanost said.

For a mosquito to bite one human, acquire a disease and then transfer it to the next person it bites poses an interesting concept for researchers. For the disease to spread, it has to survive for a certain period of time in the mosquito. The question is, how does the pathogen survive?

For a disease like malaria, the parasite has to live in an insect’s blood for part of its life cycle, all the while exposed to the mosquito’s immune system. A successful parasite has to avoid the immune system or be able to defend against it. Understanding how a pathogen can survive might result in ways to disrupt the transmission of diseases, Kanost said.

"Insects are the most abundant kind of animal," he said. "They’re very successful animals. If you want to understand biology, understanding insects is important.

"We’re at a point now where we understand at least some of what the immune responses are but how they are regulated is a big question we need to study," Kanost said. "To me, one of the aspects that’s interesting is even if we understand the immune system of one species of insect very well, there are millions of species of insects and they’re all different from each other. Even though they will have some things in common, there’s a lot to do for many lifetimes for people doing research on biochemistry in insects."

Researchers involved with the study include Maureen Gorman, research assistant professor in biochemistry, and Chansak Suwanchaichinda and Shufei Zhuang, both postdoctoral biochemistry research associates.

K-State students taking part in the research are Ana Fraire, junior in biochemistry and pre-medicine, Liberal; and Craig Doan, sophomore in biochemistry, Rose Ochieng, senior in biochemistry and pre-medicine, and Emily Ragan, graduate student in biochemistry, all of Manhattan.

Mike Kanost | EurekAlert!
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht From rigid to flexible
29.08.2016 | Technische Universität Dresden

nachricht Moth takes advantage of defensive compounds in Physalis fruits
26.08.2016 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

3-D-printed structures 'remember' their shapes

29.08.2016 | Materials Sciences

From rigid to flexible

29.08.2016 | Life Sciences

Sensor systems identify senior citizens at risk of falling within 3 weeks

29.08.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>