Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find potential stem cells in amniotic fluid – a new source?

30.06.2003


Research by Austrian geneticists has raised the possibility that stem cells[1] could be isolated from amniotic fluid – the protective ’bath water’ that surrounds the unborn baby.



Geneticist Professor Markus Hengstschläger and his team at the University of Vienna have isolated a subgroup of cells from amniotic fluid that express a protein called Oct-4 – known to be a key marker for human pluripotent stem cells.

Reporting the findings today (Monday 30 June) in Europe’s leading reproductive medicine journal Human Reproduction[2], Professor Hengstschläger stressed that the investigation was at an early stage. A lot more work had to be done to verify the finding, and tests were now under way to establish in which direction the cells could be differentiated. However, preliminary experiments have already provided evidence that they can be differentiated into nerve cells.


If, after extensive research these stem cells do prove to have similar potential to embryonic stem cells, ultimately it could reduce the need to use human embryos as a source, thus easing the tensions in this ethically controversial area.

Professor Hengstschläger believes that his team will know within two years what the amniotic cells are capable of becoming. "We have already presented good evidence in this paper for the existence of stem cells in amniotic fluid and we have evidence for neuronal differentiation. The question for the future will be – what can these cells do, in which directions can they be differentiated? Whether these cells have the same potential as embryonic stem cells is a question that can only be answered by a variety of experiments. However, our gene marker analyses demonstrate that they at least appear to resemble embryonic stem cells."

Professor Hengstschläger’s group is the first to identify amniotic fluid as a potential source of pluripotent stem cells although others have previously suggested that amniotic fluid cells might be able to make skin.

To find the cells the researchers examined amniotic fluid taken from routine diagnostic amniocentesis on pregnant women. Genetic tests on 11 independent samples revealed Oct-4 mRNA (messenger RNA) in five of the samples. They went on to test for further indications of their potential and identified stem cell factor (a growth factor), vimentin and the enzyme alkaline phosphatase mRNA expression. All three of these molecules are markers for pluripotent stem cells.

"There is no doubt as to the importance of Oct-4 for the maintenance of stem cells," said Professor Hengstschläger. "Each mammalian pluripotent stem cell line expresses Oct-4, which rapidly disappears when the cells differentiate."

Further tests on the nucleus confirmed that the correct molecule had been analysed and suggested that the Oct-4 protein expression in the amniotic fluid cells was indeed functional.

Professor Hengstschläger said that the fact that only half the amniotic fluid samples were Oct-4 positive and that only 0.1 to 0.5% of cells within these positive samples expressed the Oct-4 transcription factor indicated that there was a distinct sub-population within the amniotic fluid cell sample with the potential to differentiate, rather than indicating that they had simply found a low general background Oct-4 expression. The cells were also shown to have dividing ability because cyclin A – a crucial protein that drives cell division – was present.

"Even if, in due course, we find that this new source of stem cells only have the ability to differentiate into a specific subset of cell lines, this is still an extremely interesting finding," he said. "We believe that our findings, together with the recent demonstration that amniotic fluid can be used for tissue engineering, encourages the further investigation of human amniotic fluid as a putative new source of stem cells with high potency."


###
[1] Stem cells: the body’s master cells. They develop a few days after fertilisation. They have the facility to divide indefinitely and develop into many different specialised cells i.e. they differentiate – becoming the cells that make up all our tissues e.g. skin, blood, muscle, glands, nerves…. Stem cells have become one of the most exciting areas of research because of their ability to be cultured in a laboratory and stimulated with chemicals to become any one of the scores of specialist cells in the body. The vision is that they will one day be used to repair damaged organs, rather than using drugs or transplants. Stems cells consist of three types: totipotent (can become any cell in the body or in the placenta), pluripotent (can become any cell in the body except embryonic membranes) and multipotent (can become a limited number of types of cell).

[2] Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction. Vol. 18. No 7. Pp 1489-1493.


Contact (media inquiries only):
Margaret Willson:
Tel: +44-0-153-677-2181
Mobile: +44-0-797-385-3347
Email: m.willson@mwcommunications.org.uk

Professor Markus Hengstschläger:
Tel: +43-14-0400-7847
Mobile: 0-664-500-8297

ESHRE Press Office: (Sunday 29 June -Wednesday 2 July)
Margaret Willson, Emma Mason, Maria Maneiro, Janet Blümli
Tel: + 34-9-722-0501 or +34-91-722-0502
Fax: +34-91-722-0503

Margaret Willson | EurekAlert!
Further information:
http://www3.oup.co.uk/eshre/press-release/jun03.pdf
http://www.eshre.com

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>