Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins that work at the end of DNA could provide cancer insight

30.11.2012
New insights into a protein complex that regulates the very tips of chromosomes could improve methods of screening anti-cancer drugs.

Led by bioengineering professor Sua Myong, the research group’s findings are published in the journal Structure.

Myong’s group focused on understanding the proteins that protect and regulate telomeres, segments of repeating DNA units that cap the ends of chromosomes. Telomeres protect the important gene-coding sections of DNA from loss or damage, the genetic equivalent of aglets – the covering at the tips of shoelaces that keep the ends of the laces from unraveling or fraying.

Telomeres play an important role in cell aging and death, since each time a cell divides, a little bit is lost from the end of the telomere. Thus, cell biologists postulate that telomere length can determine the lifespan of a cell. Cancer cells, however, have a way to get around this limitation: An enzyme called telomerase that adds length to telomeres is highly active in cancer cells. This allows cancer cells to divide in perpetuity, running amok through tissues and systems.

“Cancer researchers want to get a hold of this problem, control this indefinite lengthening of the telomeres,” said Myong, who also is affiliated with the Institute for Genomic Biology at the U. of I. “A lot of the anti-cancer drugs are targeted directly to these telomeres so that they can inhibit telomerase activity. The proteins we study regulate the activity of telomerase.”

Using a technique developed at Illinois that allows researchers to watch single molecules interact in real time, Myong’s group determined how two proteins called POT-1 and TTP-1 bind to the telomere. POT-1 protects the fragile telomere ends from being attacked by other regulatory proteins that might mistake the end for a broken or damaged area of DNA. When POT-1 and TTP-1 work together in a complex, they promote telomerase activity, an interesting target for cancer researchers.

The group found that on its own, POT-1 binds to the folded-up telomere in distinct steps at particular points in the telomere’s DNA sequence, unfolding the telomere in a stepwise manner. However, the POT-1/TTP-1 complex surprised the researchers by binding, then freely sliding back and forth along the telomere end.

“Instead of stepwise binding, what we saw was a mobile protein complex, a dynamic sliding motion,” Myong said. “Somehow it was as if the static binding activity of POT-1 is completely lost – the protein complex just slid back and forth. We were able to reproduce the data and confirm it with many different tail lengths of the telomeric DNA and we know now that the contact between POT-1 and the telomere is somehow altered when the partner protein comes and binds.”

Next, the researchers will add telomerase and see how the sliding activity of the POT-1/TTP-1 complex affects telomerase activity. Myong postulates that the sliding may promote telomerase activity – and thus telomere lengthening – by making the end of the telomere accessible for the telomerase enzyme to bind.

“We are excited about the possibility that this kind of mobility can increase the telomerase extension activity,” Myong said. “It’s somehow engaging the enzyme so that it can stay bound to the DNA longer. So it must involve a direct interaction.”

Ultimately, understanding the POT-1/TTP-1 complex gives drug developers a new target for anti-cancer drugs, and the assay Myong’s group used to monitor the complex could offer a venue for evaluating telomere-targeting drugs.

“We want to extend our a basic science knowledge in telomere biology into causes of cancer and we hope that our assay can be useful for telomere-targeted drug screening,” Myong said.

The American Cancer Society and the Human Frontier Science Research Program supported this work.

Liz Ahlberg | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>