Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein serves as a natural boost for immune system fight against tumors

31.01.2014
Substances called adjuvants that enhance the body's immune response are critical to getting the most out of vaccines. These boosters stimulate the regular production of antibodies -- caused by foreign substances in the body -- toxins, bacteria, foreign blood cells, and the cells of transplanted organs.

But, biologists think that vaccine adjuvants could be much better: The currently available licensed adjuvants are poor inducers of T helper cells and even worse at inciting killer T cells that clear viruses, as well as eradicate cancer cells.

The lab of David Weiner, PhD, professor of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, identifies new adjuvants that can produce the desired T-cell response. "Different molecular adjuvants, such as cytokines, are being studied as a way to increase the efficacy of vaccines," explains Weiner. "The development of DNA-based vaccines with cytokine adjuvants has emerged as particularly promising for inducing antiviral and anti-tumor, cell-mediated immune responses."

Daniel Villarreal, a graduate student in the Weiner lab, and colleagues report in Cancer Research this week that the protein IL-33 boosts the immune system of a human papilloma virus animal model of cancer. IL-33 is a cytokine, a small protein that signals immune cells such as T cells to travel to a site of infection or injury.

Although still experimental, DNA vaccines are a conceptual leap forward over standard vaccines, as they are not live and never expose the person being vaccinated to a true pathogen or infectious agent. They are transient and do their job by fooling the host's immune system into believing there is an infectious agent invading their cells so that the host responds by producing protective levels of T cells, in particular CD8 killer T cells. DNA vaccines have been studied in animal models of viral, bacterial, and parasitic disease, as well as animal models of tumors. Due to major advances in their immune potency DNA vaccines are being studied in human clinical trials for treating cancer and infectious diseases.

The team showed that IL-33 can further enhance the response of memory T cells, the long-lived cells that can patrol and protect the body from infections and cancers, when given with a DNA vaccine compared to a vaccine without IL-33. What's more, IL-33 and the DNA vaccine augmented immunological responses in both CD4 helper T cells and CD8 killer T cells, with a large proportion of CD8 killer T cells demonstrating a further improvement in the ability of DNA vaccines to drive the immune system to kill tumor cells in animals.

"Our results support the further study and possible development of IL-33 as adjuvants in vaccinations against pathogens, including in the context of antitumor immunotherapy," says Weiner. Additional cancer and infectious diseases studies in diverse animal models are in progress.

Other co-authors are Megan C. Wise, Jewell N. Walters, Emma Reuschel, Min Joung Choi, and Nyamekye Obeng-Adjei, all from Penn, and Jian Yan and Matthew P. Morrow, from Inovio Pharmaceuticals, Inc., Blue Bell, PA. This study was funded in part by the Basser Research Center for BRCA, the National Institutes of Health (U19- AI078675) and a Sponsored Research Award from Inovio.

Editors' Note: Weiner has received compensation from Inovio for consulting and serving on the scientific advisory board.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>