Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polymer chemistry: A pinch of copper proves invaluable

22.11.2012
A novel approach produces dual-function molecules that enhance a widely used chemical reaction while reducing harmful by-products

Production of biocompatible and super-absorbent materials may become easier, thanks to Anbanandam Parthiban and co-workers at the A*STAR Institute of Chemical and Engineering Sciences.


Acrylic acid-based polymers and co-polymers (pictured) can now be synthesized using free radical chemistry, thanks to new ligand–initiator type molecules.



Copyright : 2012 A*STAR Institute of Chemical and Engineering Sciences

Using a modification to the high-precision technique known as atom transfer radical polymerization (ATRP), which links molecules into long chains, the researchers have developed new compounds that can directly polymerize acidic vinyl monomers, such as acrylic acid. Acrylic acid polymers are water-absorbing materials widely used in diapers and as emulsifying agents for pharmaceuticals and cosmetics.

Previous attempts to use ATRP with polar vinyl monomers, including acrylic acid, were unsuccessful, a failure that some chemists attributed to catalyst ‘poisoning’ by carboxylic acids. Parthiban and his team’s compounds resolve this problem by binding to the catalyst while simultaneously initiating the radical polymerization process. This process prevents poisoning and dramatically reduces metallic waste.

Despite ATRP’s inability to directly produce acrylic acid polymers, it is used in laboratories worldwide: it allows researchers to assemble complex polymers in a step-by-step fashion that gives enormous control over product architectures. The key is using a catalyst that can readily switch between two oxidation states, such as a copper salt, explains Parthiban. The copper catalyst first interacts with an ATRP initiator molecule to activate organic free radicals and an oxidized metal complex. The free radicals then quickly polymerize target monomers, while the metal complex undergoes equilibrium with a dormant, lower oxidation state. With appropriate reaction conditions, chemists can then restart polymerization with new monomers.

Parthiban and co-workers addressed ATRP’s limitation by developing ‘unimolecular ligand–initiator systems’ (ULIS), a series of branched molecules containing multiple binding sites for copper atoms, as well as halogens for activating free radical species. In this approach, the ULIS molecules become part of the polymer chain during the active–dormant cycles instead of remaining isolated. The researchers envisaged that this interconnection would suppress the acidic side-reactions that lead to catalyst poisoning.

Experiments by the researchers proved their theories correct: they could efficiently polymerize acrylic acid and other vinyl monomers using ULIS-promoted ATRP (see image). Surprisingly, they found that these reactions could be achieved using less than 100 parts-per-million concentrations of copper catalyst, a quantity comparable to residues left in conventional ATRP purified polymers.

Parthiban notes that although the ULIS ligands are part of the polymer chain and might be expected to produce high amounts of metal waste, the homogenous nature of intramolecular-based free radical polymerization allows less metal to be used — an important consequence for sustainable chemistry efforts.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information

Jana, S., Parthiban, A. & Choo, F. M. Unimolecular ligand–initiator dual functional systems (ULIS) for low copper ATRP of vinyl monomers including acrylic/methacrylic acids. Chemical Communications 48, 4256–4258 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>