Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Peering into living cells -- without dye nor fluophore

2 young EPFL scientists have developed a device that can create 3-D images of living cells and track their reaction to various stimuli without the use of contrast dyes or fluorophores

In the world of microscopy, this advance is almost comparable to the leap from photography to live television.

Thanks to this setup, a "cold" laser beam hits a sample at the center; a camera then analyses the phase (holographic technique) and a computer builds a 3-D image of the sample -- including its interior.

Credit: Yann Cotte - Fatih Toy - EPFL

Two young EPFL researchers, Yann Cotte and Fatih Toy, have designed a device that combines holographic microscopy and computational image processing to observe living biological tissues at the nanoscale. Their research is being done under the supervision of Christian Depeursinge, head of the Microvision and Microdiagnostics Group in EPFL's School of Engineering.

Using their setup, three-dimensional images of living cells can be obtained in just a few minutes – instantaneous operation is still in the works – at an incredibly precise resolution of less than 100 nanometers, 1000 times smaller than the diameter of a human hair. And because they're able to do this without using contrast dyes or fluorescents, the experimental results don't run the risk of being distorted by the presence of foreign substances.

Being able to capture a living cell from every angle like this lays the groundwork for a whole new field of investigation. "We can observe in real time the reaction of a cell that is subjected to any kind of stimulus," explains Cotte. "This opens up all kinds of new opportunities, such as studying the effects of pharmaceutical substances at the scale of the individual cell, for example."

Watching a neuron grow

This month in Nature Photonics the researchers demonstrate the potential of their method by developing, image by image, the film of a growing neuron and the birth of a synapse, caught over the course of an hour at a rate of one image per minute. This work, which was carried out in collaboration with the Neuroenergetics and cellular dynamics laboratory in EPFL's Brain Mind Institute, directed by Pierre Magistretti, earned them an editorial in the prestigious journal. "Because we used a low-intensity laser, the influence of the light or heat on the cell is minimal," continues Cotte. "Our technique thus allows us to observe a cell while still keeping it alive for a long period of time."

As the laser scans the sample, numerous images extracted by holography are captured by a digital camera, assembled by a computer and "deconvoluted" in order to eliminate noise. To develop their algorithm, the young scientists designed and built a "calibration" system in the school's clean rooms (CMI) using a thin layer of aluminum that they pierced with 70nm-diameter "nanoholes" spaced 70nm apart.

Finally, the assembled three-dimensional image of the cell, that looks as focused as a drawing in an encyclopedia, can be virtually "sliced" to expose its internal elements, such as the nucleus, genetic material and organelles.

Toy and Cotte, who have already obtained an EPFL Innogrant, have no intention of calling a halt to their research after such a promising beginning. In a company that's in the process of being created and in collaboration with the startup Lyncée SA, they hope to develop a system that could deliver these kinds of observations in vivo, without the need for removing tissue, using portable devices. In parallel, they will continue to design laboratory material based on these principles. Even before its official launch, the start-up they're creating has plenty of work to do - and plenty of ambition, as well.

Yann Cotte | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

Advanced analysis of brain structure shape may track progression to Alzheimer's disease

26.10.2016 | Health and Medicine

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

More VideoLinks >>>