OHSU scientists first to grow liver stem cells in culture, demonstrate therapeutic benefit

For decades scientists around the world have attempted to regenerate primary liver cells known as hepatocytes because of their numerous biomedical applications, including hepatitis research, drug metabolism and toxicity studies, as well as transplantation for cirrhosis and other chronic liver conditions. But no lab in the world has been successful in identifying and growing liver stem cells in culture — using any available technique – until now.

In the journal Nature, physician-scientists in the Papé Family Pediatric Research Institute at Oregon Health & Science University Doernbecher Children's Hospital, Portland, Ore., along with investigators at the Hubrecht Institute for Developmental Biology and Stem Cell Research, Utrecht, Netherlands, describe a new method through which they were able to infinitely expand liver stem cells from a mouse in a dish.

“This study raises the hope that the human equivalent of these mouse liver stem cells can be grown in a similar way and efficiently converted into functional liver cells,” said Markus Grompe, M.D., study co-author, director of the Papé Family Pediatric Research Institute at OHSU Doernbecher Children's Hospital; and professor of pediatrics, and molecular and medical genetics in the OHSU School of Medicine.

In a previous Nature study, investigators at the Hubrecht Institute, led by Hans Clever, M.D, Ph.D., were the first to identify stem cells in the small intestine and colon by observing the expression of the adult stem cell marker Lgr5 and growth in response to a growth factor called Wnt. They also hypothesized that the unique expression pattern of Lgr5 could mark stem cells in other adult tissues, including the liver, an organ for which stem cell identification remained elusive.

In the current Nature study, Grompe and colleagues in the Papé Family Pediatric Research Institute at OHSU Doernbecher used a modified version of the Clever method and discovered that Wnt-induced Lgr5 expression not only marks stem cell production in the liver, but it also defines a class of stem cells that become active when the liver is damaged.

The scientists were able to grow these liver stem cells exponentially in a dish – an accomplishment never before achieved – and then transplant them in a specially designed mouse model of liver disease, where they continued to grow and show a modest therapeutic effect.

“We were able to massively expand the liver cells and subsequently convert them to hepatocytes at a modest percentage. Going forward, we will enlist other growth factors and conditions to improve that percentage. Liver stem cell therapy for chronic liver disease in humans is coming,” said Grompe.

The study, “In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration,” was funded by National Institutes of Health Grant R0I DK05192.

Investigators who contributed to this research include: Grompe, Craig Dorrell, Annelise Haft, Papé Family Pediatric Research Institute, OHSU Doernbecher Children's Hospital; Clever, Meritxell Huch, Sylvia Boj, Johan van Es, Vivian Li, Mare van de Wetering, Toshiro Sato, Karien Hamer, Nobuo Sasaki, Robert Vries, Hubrecht Institute for Developmental Biology and Stem Cell Research; and Milton Finegold, Texas Children's Hospital Houston.

ABOUT OHSU DOERNBECHER CHILDREN'S HOSPITAL

OHSU Doernbecher Children's Hospital ranks among the top 50 children's hospitals in the United States, according to U.S. News & World Report 2012-13 Best Children's Hospitals, and is one of only 22 National Institutes of Health-designated Child Health Research Centers in the country. OHSU Doernbecher cares for tens of thousands of children each year from Oregon, Southwest Washington and around the nation, resulting in more than 175,000 discharges, surgeries, transports and outpatient visits annually.

Media Contact

Tamara Hargens-Bradley EurekAlert!

More Information:

http://www.ohsu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors