Newly discovered bacteria as potential source of medicine

The marine sponge Theonella swinhoei resembles a smooth stone with openings on top. (Photo: Junichi Tanaka, University of the Ryukyus, Japan)<br><br>Image amended from: Hentschel et al (2012), Nature Reviews Microbiology<br>

Many medications that are used to treat cancer or infectious diseases, for example, contain substances derived from bacteria and other microorganisms. Marine sponges play an important role in the search for new drugs from the natural environment. This is because they contain exceptionally diverse and unusual natural substances.

Now an international venture coordinated by Professor Jörn Piel from the Swiss Federal Institute of Technology in Zurich (ETH Zurich) has broken new ground in this area. The scientists have discovered the origin of the many interesting substances found in the sponge Theonella swinhoei: they are produced by the bacteria genus Entotheonella, which lives in the sponge as a kind of lodger.

Tectomicrobia as a new bacteria group

Since the newly discovered bacterium is so unusual, the researchers were unable to assign it to a known group in the conventional system. They are therefore proposing a new strain (phylum), which they are calling Tectomicrobia.

The name Tectomicrobia is derived from the Latin word “tegere”, which means “to hide, to protect”. This term was chosen because the bacteria cannot be cultivated in the laboratory yet and are therefore “well hidden” from science. Furthermore, they presumably protect their host sponges, with the many substances they contain, from fish and other predators.

Habitat in sponges and sea water

Würzburg’s Professor Ute Hentschel-Humeida, expert in the microbiology of marine sponges, and her colleagues Dr. Susanne Schmitt and Christine Gernert were involved in describing the new bacteria. The Würzburg team also conducted studies into the distribution of the new strain. “Tectobacteria can be found in many other sponges, and also in sea water,” says Hentschel-Humeida, which points to their ecological relevance.

Making the chemical arsenal available

As their next step, the research teams are keen to discover what functions tectobacteria perform in symbiosis with their host sponge as well as in the coral reef ecosystem. They will also strive to make the bacteria’s chemical arsenal available for research and for possible biotechnological applications.

“An environmental bacterial taxon with a large and distinct metabolic repertoire”, Micheal C. Wilson, Tetsushi Mori, Christian Rückert, Agustinus R. Uria, Maximilian J. Helf, Kentaro Takada, Christine Gernert, Ursula A. E. Steffens, Nina Heycke, Susanne Schmitt, Christian Rinke, Eric J. N. Helfrich, Alexander O. Brachmann, Cristian Gurgui, Toshiyuki Wakimoto, Matthias Kracht, Max Crüsemann, Ute Hentschel, Ikuro Abe, Shigeki Matsunaga, Jörn Kalinowski, Haruko Takeyama & Jörn Piel, Nature, January 29, 2014, DOI: 10.1038/nature12959

Contact

Prof. Dr. Jörn Piel, Institute of Microbiology, ETH Zurich, Switzerland, T +41 44 633 07 55; e-mail: jpiel@ethz.ch

Prof. Dr. Ute Hentschel-Humeida, Department of Botany II, Julius-von-Sachs-Institute for Biosciences, T +49 (0)931 31-82581, e-mail: ute.hentschel@uni-wuerzburg.de

Media Contact

Robert Emmerich Uni Würzburg

More Information:

http://www.uni-wuerzburg.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors