Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newly discovered bacteria as potential source of medicine

30.01.2014
A bacteria genus living in marine sponges produces so many natural substances that scientists are classifying it as a potent source for new drugs. The bacteria are presented in the journal “Nature”. Würzburg researchers were involved in describing them.

Many medications that are used to treat cancer or infectious diseases, for example, contain substances derived from bacteria and other microorganisms. Marine sponges play an important role in the search for new drugs from the natural environment. This is because they contain exceptionally diverse and unusual natural substances.


The marine sponge Theonella swinhoei resembles a smooth stone with openings on top. (Photo: Junichi Tanaka, University of the Ryukyus, Japan)

Image amended from: Hentschel et al (2012), Nature Reviews Microbiology

Now an international venture coordinated by Professor Jörn Piel from the Swiss Federal Institute of Technology in Zurich (ETH Zurich) has broken new ground in this area. The scientists have discovered the origin of the many interesting substances found in the sponge Theonella swinhoei: they are produced by the bacteria genus Entotheonella, which lives in the sponge as a kind of lodger.

Tectomicrobia as a new bacteria group

Since the newly discovered bacterium is so unusual, the researchers were unable to assign it to a known group in the conventional system. They are therefore proposing a new strain (phylum), which they are calling Tectomicrobia.

The name Tectomicrobia is derived from the Latin word “tegere”, which means “to hide, to protect”. This term was chosen because the bacteria cannot be cultivated in the laboratory yet and are therefore “well hidden” from science. Furthermore, they presumably protect their host sponges, with the many substances they contain, from fish and other predators.

Habitat in sponges and sea water

Würzburg’s Professor Ute Hentschel-Humeida, expert in the microbiology of marine sponges, and her colleagues Dr. Susanne Schmitt and Christine Gernert were involved in describing the new bacteria. The Würzburg team also conducted studies into the distribution of the new strain. “Tectobacteria can be found in many other sponges, and also in sea water,” says Hentschel-Humeida, which points to their ecological relevance.

Making the chemical arsenal available

As their next step, the research teams are keen to discover what functions tectobacteria perform in symbiosis with their host sponge as well as in the coral reef ecosystem. They will also strive to make the bacteria’s chemical arsenal available for research and for possible biotechnological applications.

“An environmental bacterial taxon with a large and distinct metabolic repertoire”, Micheal C. Wilson, Tetsushi Mori, Christian Rückert, Agustinus R. Uria, Maximilian J. Helf, Kentaro Takada, Christine Gernert, Ursula A. E. Steffens, Nina Heycke, Susanne Schmitt, Christian Rinke, Eric J. N. Helfrich, Alexander O. Brachmann, Cristian Gurgui, Toshiyuki Wakimoto, Matthias Kracht, Max Crüsemann, Ute Hentschel, Ikuro Abe, Shigeki Matsunaga, Jörn Kalinowski, Haruko Takeyama & Jörn Piel, Nature, January 29, 2014, DOI: 10.1038/nature12959

Contact

Prof. Dr. Jörn Piel, Institute of Microbiology, ETH Zurich, Switzerland, T +41 44 633 07 55; e-mail: jpiel@ethz.ch

Prof. Dr. Ute Hentschel-Humeida, Department of Botany II, Julius-von-Sachs-Institute for Biosciences, T +49 (0)931 31-82581, e-mail: ute.hentschel@uni-wuerzburg.de

Robert Emmerich | Uni Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>